Gut | Probability: A Graduate Course | E-Book | www.sack.de
E-Book

E-Book, Englisch, 608 Seiten

Reihe: Springer Texts in Statistics

Gut Probability: A Graduate Course


1. Auflage 2006
ISBN: 978-0-387-27332-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 608 Seiten

Reihe: Springer Texts in Statistics

ISBN: 978-0-387-27332-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.

Gut Probability: A Graduate Course jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;5
2;Contents;8
3;Outline of Contents;16
4;Notation and Symbols;19
5;1 Introductory Measure Theory;22
5.1;1 Probability Theory: An Introduction;22
5.2;2 Basics from Measure Theory;23
5.3;3 The Probability Space;31
5.4;4 Independence; Conditional Probabilities;37
5.5;5 The Kolmogorov Zero-one Law;41
5.6;6 Problems;43
6;2 Random Variables;46
6.1;1 Definition and Basic Properties;46
6.2;2 Distributions;51
6.3;3 Random Vectors; Random Elements;64
6.4;4 Expectation; Definitions and Basics;67
6.5;5 Expectation; Convergence;75
6.6;6 Indefinite Expectations;79
6.7;7 A Change of Variables Formula;81
6.8;8 Moments, Mean, Variance;83
6.9;9 Product Spaces; Fubini’s Theorem;85
6.10;10 Independence;89
6.11;11 The Cantor Distribution;94
6.12;12 Tail Probabilities and Moments;95
6.13;13 Conditional Distributions;100
6.14;14 Distributions with Random Parameters;102
6.15;15 Sums of a Random Number of Random Variables;104
6.16;16 Random Walks; Renewal Theory;109
6.17;17 Extremes; Records;114
6.18;18 Borel-Cantelli Lemmas;117
6.19;19 A Convolution Table;134
6.20;20 Problems;135
7;3 Inequalities;139
7.1;1 Tail Probabilities Estimated via Moments;139
7.2;2 Moment Inequalities;147
7.3;3 Covariance; Correlation;150
7.4;4 Interlude on Lp-spaces;151
7.5;5 Convexity;152
7.6;6 Symmetrization;153
7.7;7 Probability Inequalities for Maxima;158
7.8;8 The Marcinkiewics-Zygmund Inequalities;166
7.9;9 Rosenthal’s Inequality;171
7.10;10 Problems;173
8;4 Characteristic Functions;176
8.1;1 Definition and Basics;176
8.2;2 Some Special Examples;185
8.3;3 Two Surprises;192
8.4;4 Refinements;194
8.5;5 Characteristic Functions of Random Vectors;199
8.6;6 The Cumulant Generating Function;203
8.7;7 The Probability Generating Function;205
8.8;8 The Moment Generating Function;208
8.9;9 Sums of a Random Number of Random Variables;211
8.10;10 The Moment Problem;213
8.11;11 Problems;216
9;5 Convergence;220
9.1;1 Definitions;221
9.2;2 Uniqueness;226
9.3;3 Relations Between Convergence Concepts;228
9.4;4 Uniform Integrability;233
9.5;5 Convergence of Moments;237
9.6;6 Distributional Convergence Revisited;244
9.7;7 A Subsequence Principle;248
9.8;8 Vague Convergence; Helly’s Theorem;249
9.9;9 Continuity Theorems;257
9.10;10 Convergence of Functions of Random Variables;262
9.11;11 Convergence of Sums of Sequences;266
9.12;12 Cauchy Convergence;275
9.13;13 Skorohod’s Representation Theorem;277
9.14;14 Problems;279
10;6 The Law of Large Numbers;284
10.1;1 Preliminaries;285
10.2;2 A Weak Law for Partial Maxima;288
10.3;3 The Weak Law of Large Numbers;289
10.4;4 A Weak Law Without Finite Mean;297
10.5;5 Convergence of Series;303
10.6;6 The Strong Law of Large Numbers;313
10.7;7 The Marcinkiewicz-Zygmund Strong Law;317
10.8;8 Randomly Indexed Sequences;320
10.9;9 Applications;324
10.10;10 Uniform Integrability; Moment Convergence;328
10.11;11 Complete Convergence;330
10.12;12 Some Additional Results and Remarks;334
10.13;13 Problems;342
11;7 The Central Limit Theorem;347
11.1;1 The i.i.d. Case;348
11.2;2 The Lindeberg-Levy-Feller Theorem;348
11.3;3 Anscombe’s Theorem;363
11.4;4 Applications;366
11.5;5 Uniform Integrability; Moment Convergence;370
11.6;6 Remainder Term Estimates;372
11.7;7 Some Additional Results and Remarks;380
11.8;8 Problems;394
12;8 The Law of the Iterated Logarithm;400
12.1;1 The Kolmogorov and Hartman-Wintner LILs;401
12.2;2 Exponential Bounds;402
12.3;3 Proof of the Hartman-Wintner Theorem;404
12.4;4 Proof of the Converse;413
12.5;5 The LIL for Subsequences;415
12.6;6 Cluster Sets;421
12.7;7 Some Additional Results and Remarks;429
12.8;8 Problems;437
13;9 Limit Theorems; Extensions and Generalizations;439
13.1;1 Stable Distributions;440
13.2;2 The Convergence to Types Theorem;443
13.3;3 Domains of Attraction;446
13.4;4 Infinitely Divisible Distributions;458
13.5;5 Sums of Dependent Random Variables;464
13.6;6 Convergence of Extremes;467
13.7;7 The Stein-Chen Method;475
13.8;8 Problems;480
14;10 Martingales;483
14.1;1 Conditional Expectation;484
14.2;2 Martingale Definitions;493
14.3;3 Examples;497
14.4;4 Orthogonality;503
14.5;5 Decompositions;505
14.6;6 Stopping Times;507
14.7;7 Doob’s Optional Sampling Theorem;511
14.8;8 Joining and Stopping Martingales;513
14.9;9 Martingale Inequalities;517
14.10;10 Convergence;524
14.11;11 The Martingale { E( Z | Fn)};531
14.12;12 Regular Martingales and Submartingales;532
14.13;13 The Kolmogorov Zero-one Law;536
14.14;14 Stopped Random Walks;537
14.15;15 Regularity;547
14.16;16 Reversed Martingales and Submartingales;557
14.17;17 Problems;564
15;A Some Useful Mathematics;570
15.1;1 Taylor Expansion;570
15.2;2 Mill’s Ratio;573
15.3;3 Sums and Integrals;574
15.4;4 Sums and Products;575
15.5;5 Convexity; Clarkson’s Inequality;576
15.6;6 Convergence of (Weighted) Averages;579
15.7;7 Regularly and Slowly Varying Functions;581
15.8;8 Cauchy’s Functional Equation;583
15.9;9 Functions and Dense Sets;585
16;References;591
17;Index;603



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.