Gutiérrez | The Monge-Ampère Equation | Buch | 978-3-319-82806-0 | sack.de

Buch, Englisch, Band 89, 216 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

Gutiérrez

The Monge-Ampère Equation


Softcover Nachdruck of the original 2. Auflage 2016
ISBN: 978-3-319-82806-0
Verlag: Springer International Publishing

Buch, Englisch, Band 89, 216 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

ISBN: 978-3-319-82806-0
Verlag: Springer International Publishing


Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications.  It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli.  The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions.  An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts.  Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions.  New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives.  Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics.  Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.

Gutiérrez The Monge-Ampère Equation jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Generalized Solutions to Monge-Ampère Equations.- Uniformly Elliptic Equations in Nondivergence Form.- The Cross-sections of Monge-Ampère.- Convex Solutions of detDu=1 in Rn.- Regularity Theory for the Monge-Ampère Equation.- W^2,p Estimates for the Monge-Ampère Equation.- The Linearized Monge-Ampère Equation.- Interior Hölder Estimates for Second Derivatives.- References.- Index.


Cristian Gutierrez is a Professor in the Department of Mathematics at Temple University in Philadelphia, PA, USA. He teaches courses in Partial Differential Equations and Analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.