Buch, Englisch, Band 5, 391 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 770 g
Buch, Englisch, Band 5, 391 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 770 g
Reihe: Complex Networks and Dynamic Systems
ISBN: 978-3-031-25562-5
Verlag: Springer International Publishing
This book presents advanced research in a relatively new field of scholarly inquiry that is usually referred to as dynamic network user equilibrium, now almost universally abbreviated as DUE. It provides the first synthesis of results obtained over the last decade from applying the differential variational inequality (DVI) formalism to study the DUE problem. In particular, it explores the intimately related problem of dynamic network loading, which determines the arc flows and effective travel delays (or generalized travel costs) arising from the expression of departure rates at the origins of commuter trips between the workplace and home.
In particular, the authors show that dynamic network loading with spillback of queues into upstream arcs may be formulated as a differential algebraic equation system. They demonstrate how the dynamic network loading problem and the dynamic traffic user equilibrium problem may be solved simultaneously rather than sequentially, as well as how the first-in-first-out queue discipline may be maintained for each when Lighthill-Whitham-Richardson traffic flow theory is used. A number of recent and new extensions of the DVI-based theory of DUE and corresponding examples are presented and discussed. Relevant mathematical background material is provided to make the book as accessible as possible.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Regional- und Städtische Wirtschaft
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Geowissenschaften Geographie | Raumplanung Regional- & Raumplanung Verkehrsplanung, Verkehrspolitik
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Transport- und Verkehrswirtschaft
Weitere Infos & Material
Introduction.- Mathematical Preliminaries.- The Variational Inequality Formulation of Dynamic User Equilibria.- The Differential Variational Inequality Formulation of Dynamic User Equilibria.- Existence of Dynamic User Equilibria.- Algorithms for Computing Dynamic User Equilibria.- Dynamic Network Loading: Non-Physical Queue Models.- Dynamic Network Loading: Physical Queue Models.- Numerical Results.