Hanus | Der leichte Einstieg in die Elektrotechnik & Elektronik | E-Book | www.sack.de
E-Book

E-Book, Deutsch, 240 Seiten

Reihe: Elektronik

Hanus Der leichte Einstieg in die Elektrotechnik & Elektronik

Bauteile der Elektrotechnik · Solartechnik · Netzgeräte · Motoren und Generatoren · Messgeräte · Beleuchtung
1. Auflage 2013
ISBN: 978-3-645-25118-1
Verlag: Franzis Verlag
Format: PDF
Kopierschutz: 1 - PDF Watermark

Bauteile der Elektrotechnik · Solartechnik · Netzgeräte · Motoren und Generatoren · Messgeräte · Beleuchtung

E-Book, Deutsch, 240 Seiten

Reihe: Elektronik

ISBN: 978-3-645-25118-1
Verlag: Franzis Verlag
Format: PDF
Kopierschutz: 1 - PDF Watermark



Hier ist das Buch, mit dem Sie sich das Wissen über die Elektrotechnik und Elektronik anhand vieler erklärender Bilder und Versuchsbeispiele statt mit endlosen Texten aneignen können. Kurz und bündig erklärt der Autor alle wichtigen Zusammenhänge dieser Technik, ohne dass jemals Langeweile aufkommt. Fachbuchern für den Einsteiger mit leicht verständlichen Themen Dieses Buch ermöglicht Ihnen einen spielerischen Einstieg in die Welt der Elektrotechnik. Viele erklärende Bilder und interessante, praktisch nachvollziehbare Versuche garantieren den Lernerfolg. Wer aus beruflichen Gründen etwas mehr über die Elektrotechnik oder Elektronik wissen möchte oder als Elektro-Heimwerker seine Kenntnisse erweitern will, hat mit diesem Buch die richtige Wahl getroffen. So funktionieren die Bauteile der Elektrotechnik Er erfährt z. B., wie sich Gleich- von Wechselstrom unterscheidet, was es mit dem Magnetismus auf sich hat, wie Dynamos und Motoren funktionieren, wie elektrisch beleuchtet und geheizt wird, was es mit Transformatoren und Netzgeräten auf sich hat und welche Aufgaben Widerstände, Kondensatoren, Induktivitäten und Transformatoren haben. Fachwissen in die Praxis umsetzen Nach dem Studium des Buches wird der Leser beruhigt feststellen, dass Elektronik und Elektrotechnik keine Geheimwissenschaften sind. Aus dem 'Der leichte Einstieg in die Elektrotechnik & Elektronik' Inhalt: *Bauelemente der Elektrotechnik *Solartechnik *Netzgeräte *Schalten und Steuern *Elektromotoren und Generatoren *Zeitgeber *und vieles mehr

Bo Hanus zählt zu den erfahrensten Autoren von Solar- und Do-it-yoursef-Büchern. Seine Ratgeber zum Thema regenerative Energien sind auf Bestsellerlisten immer wieder an erster Stelle zu finden und haben wohl so manchem aus der sprichwörtlichen Patsche geholfen.
Hanus Der leichte Einstieg in die Elektrotechnik & Elektronik jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1   Die elektrische Energie


Steckdosen und Batterien sind die bekanntesten Energiequellen, aus denen wir die elektrische Energie beziehen.

Batterien sind nur Energiekonserven mit einem beschränkten Vorrat an Energie. Sie sind wahlweise als Batterien (Akkus) oder als Batterien (Wegwerfbatterien) erhältlich.

Der elektrische Strom aus den Steckdosen, die an das öffentliche Stromnetz angeschlossen sind, steht einfach „auf Abruf“ jederzeit bereit. Er wird überwiegend in großen Stromgeneratoren erzeugt, die vom Prinzip her ähnlich einem Fahrraddynamo konstruiert sind. Sie sind zwar viel größer und aufwendiger, aber erzeugen den elektrischen Strom auf die gleiche Weise (darauf kommen wir noch zurück).

Wir wissen, dass die elektrische Energie in zwei Grundformen zur Verfügung steht: als und oder alternativ als und .

Als internationale Abkürzung für die bzw. den wird ~ verwendet.

Für und wird die Abkürzung (alternativ das Symbol „=“) gebraucht.

Beispiele:

„230 V AC“ oder alternativ „230 V~“ bedeutet, dass es sich um eine 230-Volt-Wechselspannung handelt.

„12 V DC“ oder alternativ „12 V =“ bedeutet, dass es um eine 12-Volt-Gleichspannung geht.

1.1   Die elektrische Spannung


Wir wissen, dass jede Quelle der elektrischen Energie eine vorgegebene Spannung hat und dass jedes elektrische Gerät oder jede Glühlampe für eine – vom Hersteller bestimmte – ausgelegt ist.

Die elektrische Spannung wird in (abgekürzt V), manchmal auch in Kilovolt (kV) oder in Millivolt (mV) angegeben bzw. gemessen. Mit der Umrechnung ist es ähnlich wie bei den Längenmaßen (Meter, Kilometer oder Millimeter): 1 kV = 1.000 V, 1 mV = 0,001 V.

Abhängig von der Art der vorgesehenen Stromversorgung werden elektrische Geräte in und eingestuft. Manche Geräte sind für beide Arten der Stromversorgung vorgesehen. Zudem verfügen viele batteriebetriebene Geräte über ein zusätzliches „Netzteil“, über das sie wahlweise an eine 230-Volt-Steckdose angeschlossen werden können.

Die 230-Volt-Spannung beziehen wir in der Bundesrepublik als (Licht- und Steckdosenspannung) aus dem öffentlichen elektrischen Netz. Für diese Spannung sind fast alle Haushaltsnetzgeräte und die meisten elektrischen Vorrichtungen ausgelegt. Das ist uns aber bekannt, denn wenn wir eine „normale“ Glühlampe oder Leuchtstofflampe kaufen wollen, müssen wir darauf achten, dass sie auch tatsächlich für „230 V“ vorgesehen ist.

Dass eine PKW-Glühlampe für eine 12-Volt-Versorgungsspannung ausgelegt ist, wissen die meisten von uns. Die gleiche Spannung hat ja auch die . Eine Fahrrad-Glühlampe ist wiederum für eine Spannung von bescheidenen 6 Volt konzipiert, denn der Fahrraddynamo – oder alternativ der Fahrradakku – liefert mehr oder weniger nur diese Spannung. Der Dynamo erzeugt jedoch die volle 6-Volt-Spannung nur, wenn kräftiger in die Pedale getreten wird, denn die von ihm gelieferte Spannung hängt von der Drehzahl seines ab.

Mit einer Betriebsspannung von bescheidenen 1,5 Volt geben sich vor allem die meisten Funk- und Quarzuhren zufrieden. Armbanduhren beziehen diese 1,5 V aus kleinen Knopfzellen, Haushaltsuhren aus kleinen (Mikro- oder Mignon-) Batterien. Einige Kleingeräte oder Spielzeuge geben sich sogar mit einer Betriebsspannung von 1,2 Volt zufrieden. Das kommt mit der typischen eines - oder überein.

1.2   Der elektrische Strom


Der elektrische Strom wird oft mit dem Wasserstrom verglichen: Aus einem dünnen Gartenschlauch fließt ein schwacher, aus einem Feuerwehrschlauch kann bei Bedarf ein wesentlich kräftigerer Wasserstrom fließen. Das gleiche gilt auch für den elektrischen Strom: Je kräftiger der Strom ist, der durch einen Leiter fließt, desto größer muss der Durchmesser des Leiters sein.

Und je stärker ein Strom ist, desto mehr kann er leisten. Das gilt sowohl für den Wasserstrom als auch für den elektrischen Strom.

Der elektrische Strom ist jedoch nicht sichtbar. Man kann daher eine Stromleitung in dieser Hinsicht mit einer Druckluftleitung vergleichen, in der die strömende Luft ebenfalls nicht sichtbar ist, aber dennoch erfahrungsgemäß z. B. pneumatische Handwerkzeuge antreiben kann.

Die Stromstärke wird in (A) oder in (mA) angegeben oder gemessen. Auch hier ist es mit der Umrechnung von in ähnlich wie bei der Umrechnung von Millimetern in Meter (1 mA = 0,001 A).

Der elektrische Strom fließt – in der Form von Elektronen – durch kompakte Leiter, die überwiegend als Drähte oder Kabel in diversen Durchmessern erhältlich sind. Genau genommen fließt der elektrische Strom durch alle Metalle (oder auch durch andere elektrisch leitende Materialien), ohne Rücksicht auf ihre Form.

Je kräftiger der Strom ist, der durch einen Leiter fließt, desto größer muss der Durchmesser des Leiters sein.

Aus einer Regentonne fließt das Wasser heraus, sobald der Wasserhahn aufgedreht wird. Das ist der Schwerkraft zu verdanken.

Der elektrische Strom kann nicht aus eigener Kraft aus der Steckdose oder aus der Batterie herausfließen. Da jede elektrische Spannungsquelle aus zwei Polen besteht, kann der Strom immer erst dann von einem Pol (Pluspol) zum anderen Pol (Minuspol) fließen, wenn eine elektrisch leitende Verbindung erstellt wird.

In einer intakten (aufgeladenen) Batterie herrscht am Minuspol ein Überschuss an Elektronen und am Pluspol ein Mangel an Elektronen. Wird an die zwei Pole z. B. ein Glühlämpchen angeschlossen, fließen durch ihren Glühfaden die Elektronen vom Minuspol zum Pluspol – allerdings nur so lange, bis sich ein Gleichgewicht einstellt (= bis die Batterie leer ist).

Der Fluss der Elektronen bewegt sich – als fließende elektrische Ladung – zwar vom Minuspol zum Pluspol, aber der elektrische Strom fließt in der Gegenrichtung vom Pluspol zum Minuspol. Daher gilt in der Elektrotechnik (und Elektronik) als Faustregel, dass der elektrische Strom immer vom Pluspol zum Minuspol fließt. Darauf werden auch alle Schaltungen und Funktionen abgestimmt.

Der Glühfaden des Glühlämpchens wirkt sich auf die strömenden Elektronen als eine Bremse aus. Würde man bei diesem Beispiel das Glühlämpchen weglassen und die Pole einer Batterie nur mit einem Kupferdraht verbinden, hätte das einen zur Folge. Ein sehr dünner Kupferdraht würde dabei schmelzen (wie eine Sicherung „durchbrennen“), ein dicker Kupferdraht würde einen explosionsartigen Ausgleich der Polpotenziale verursachen und dabei die Batterie vernichten.

Als Abhilfe gegen ein solches Risiko dienen Sicherungen, die z. B. auch bei einem Pkw zwischen der Autobatterie und den Zuleitungen zu allen Lampen und anderen „elektrischen Verbrauchern“ eingegliedert sind. Auch ein jedes verfügt über Sicherungen oder Sicherungsautomaten, die bei einem Kurzschluss die geschützte Leitung vom Netz abschalten.

Sowohl für Wechselstrom als auch für Gleichstrom gilt:

Die Strom-Maßeinheit heißt (abgekürzt A). In der gängigen Praxis wird der Strom manchmal nur in Milliampere (mA) oder Mikroampere (µA) angegeben. Auch hier ist es mit der Umrechnung ähnlich wie bei den metrischen Maßeinheiten: 1 A = 1.000 mA oder 1.000.000 µA.

Der Unterschied zwischen Wechselstrom und Gleichstrom ist vom Prinzip her leicht zu erklären:

Wird eine Glühlampe an eine Batterie angeschlossen, fließt durch sie ununterbrochen ein konstanter Strom nur in einer Richtung.

Eine improvisierte Wechselstromquelle könnten wir – wie abgebildet – z. B. mithilfe einer Batterie-Stromversorgung erstellen, bei der die Polarität der Stromzufuhr zu der Glühlampe durch ständiges der Batterieanschlüsse gewechselt wird.

Auf die hier bildlich dargestellte Art wäre die der Wechselspannung natürlich nur sehr niedrig. Man könnte jedoch einen solchen Polaritätswechsel z. B. mithilfe eines kleinen elektromagnetischen Umschalters beschleunigen, der wie ein Blinker hin und her wippt und das ständige Umdrehen der Batterie ersetzt. Auf den „tieferen Sinn“ einer solchen Lösung, sowie auch auf die tatsächliche Wechselstromerzeugung, kommen wir in Kap. 4 zurück.

1.3   Die elektrische...




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.