Hautsch | Modelling Irregularly Spaced Financial Data | Buch | sack.de

Hautsch Modelling Irregularly Spaced Financial Data

Theory and Practice of Dynamic Duration Models

Softcover Nachdruck of the original 1. Auflage 2004, Band: 539, 292 Seiten, Kartoniert, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 464 g Reihe: Lecture Notes in Economics and Mathematical Systems
ISBN: 978-3-540-21134-1
Verlag: Springer Berlin Heidelberg

Hautsch Modelling Irregularly Spaced Financial Data

This book has been written as a doctoral dissertation at the Department of Economics at the University of Konstanz. I am indebted to my supervisor Winfried Pohlmeier for providing a stimulating and pleasant research en- ronment and his continuous support during my doctoral studies. I strongly bene?tted from inspiring discussions with him, his valuable advices and he- ful comments regarding the contents and the exposition of this book. I am grateful to Luc Bauwens for refereeing my work as a second super- sor. Moreover, I wish to thank him for o?ering me the possibility of a research visit at the Center of Operations Research and Econometrics (CORE) at the Universit´ e Catholique de Louvain. Important parts of this book have been conceived during this period. Similarly, I am grateful to Tony Hall who invited me for a research visit at the University of Technology, Sydney, and provided me access to an excellent database from the Australian Stock Exchange. I would like to thank him for his valuable support and the permission to use this data for empirical studies in this book. I wish to thank my colleagues at the University of Konstanz Frank G- hard,DieterHess,JoachimInkmann,MarkusJochmann,StefanKlotz,Sandra Lechner and Ingmar Nolte who o?ered me advice, inspiration, friendship and successfulco-operations.Moreover,Iamgratefultothestudentresearchass- tantsat the Chair of Econometrics at the University of Konstanz, particularly Magdalena Ramada Sarasola, Danielle Tucker and Nadine Warmuth who did a lot of editing work.




Weitere Infos & Material

1 Introduction.- 2 Point Processes.- 2.1 Basic Concepts of Point Processes.- 2.1.1 Fundamental Definitions.- 2.1.2 The Homogeneous Poisson Process.- 2.1.3 The Intensity Function and its Properties.- 2.1.4 Intensity-Based Inference.- 2.2 Types of Point Processes.- 2.2.1 Poisson Processes.- 2.2.2 Renewal Processes.- 2.2.3 Dynamic Point Processes.- 2.3 Non-Dynamic Point Process Models.- 2.3.1 Intensity-Based Models.- 2.3.2 Duration Models.- 2.3.3 Count Data Models.- 2.4 Censoring and Time-Varying Covariates.- 2.4.1 Censoring.- 2.4.2 Time-Varying Covariates.- 2.5 Outlook on Dynamic Extensions.- 3 Economic Implications of Financial Durations.- 3.1 Types of Financial Durations.- 3.1.1 Selection by Single Marks.- 3.1.2 Selection by Sequences of Marks.- 3.2 The Role of Trade Durations in Market Microstructure Theory.- 3.2.1 Traditional Market Microstructure Approaches.- 3.2.2 Determinants of Trade Durations.- 3.3 Risk Estimation based on Price Durations.- 3.3.1 Duration-Based Volatility Measurement.- 3.3.2 Economic Implications of Directional Change Durations.- 3.4 Liquidity Measurement.- 3.4.1 The Liquidity Concept.- 3.4.2 Volume Durations and Liquidity.- 3.4.3 The VNET Measure.- 3.4.4 Measuring (Il)liquidity Risks using Excess Volume Durations.- 4 Statistical Properties of Financial Durations.- 4.1 Data Preparation Issues.- 4.1.1 Matching Trades and Quotes.- 4.1.2 Treatment of Split-Transactions.- 4.1.3 Identification of Buyer- and Seller-Initiated Trades.- 4.2 Transaction Databases and Data Preparation.- 4.2.1 NYSE Trading.- 4.2.2 XETRA Trading.- 4.2.3 Frankfurt Floor Trading.- 4.2.4 Bund Future Trading at EUREX and LIFFE.- 4.2.5 ASX Trading.- 4.3 Statistical Properties of Trade, Limit Order and Quote Durations.- 4.4 Statistical Properties of Price Durations.- 4.5 Statistical Properties of (Excess) Volume Durations.- 4.6 Summarizing the Statistical Findings.- 5 Autoregressive Conditional Duration Models.- 5.1 ARMA Models for (Log-)Durations.- 5.2 The ACD Model.- 5.2.1 The Basic ACD Framework.- 5.2.2 QML Estimation of the ACD Model.- 5.2.3 Distributional Issues and ML Estimation of the ACD Model.- 5.2.4 Seasonalities and Explanatory Variables.- 5.3 Extensions of the ACD Framework.- 5.3.1 Augmented ACD Models.- 5.3.2 Theoretical Properties of Augmented ACD Models.- 5.3.3 Regime-Switching ACD Models.- 5.3.4 Long Memory ACD Models.- 5.3.5 Further Extensions.- 5.4 Testing the ACD Model.- 5.4.1 Simple Residual Checks.- 5.4.2 Density Forecast Evaluations.- 5.4.3 Lagrange Multiplier Tests.- 5.4.4 Conditional Moment Tests.- 5.4.5 Integrated Conditional Moment Tests.- 5.4.6 Monte Carlo Evidence.- 5.5 Applications of ACD Models.- 5.5.1 Evaluating ACD Models based on Trade and Price Durations.- 5.5.2 Modelling Trade Durations.- 5.5.3 Quantifying (Il)liquidity Risks.- 6 Semiparametric Dynamic Proportional Intensity Models.- 6.1 Dynamic Integrated Intensity Processes.- 6.2 The Semiparametric ACPI Model.- 6.3 Properties of the Semiparametric ACPI Model.- 6.3.1 Autocorrelation Structure.- 6.3.2 Evaluating the Estimation Quality.- 6.4 Extensions of the ACPI Model.- 6.4.1 Regime-Switching Dynamics.- 6.4.2 Regime-Switching Baseline Intensities.- 6.4.3 Censoring.- 6.4.4 Unobserved Heterogeneity.- 6.5 Testing the ACPI Model.- 6.6 Estimating Volatility Using the ACPI Model.- 6.6.1 The Data and the Generation of Price Events.- 6.6.2 Empirical Findings.- 7 Univariate and Multivariate Dynamic Intensity Models.- 7.1 Univariate Dynamic Intensity Models.- 7.1.1 The ACI Model.- 7.1.2 The Hawkes Model.- 7.2 Multivariate Dynamic Intensity Models.- 7.2.1 Definitions.- 7.2.2 The Multivariate ACI Model.- 7.2.3 The Multivariate Hawkes Model.- 7.3 Dynamic Latent Factor Models for Intensity Processes.- 7.3.1 The LFI Model.- 7.3.2 The Univariate LFI Model.- 7.3.3 The Multivariate LFI Model.- 7.3.4 Dynamic Properties of the LFI Model.- 7.3.5 SML Estimation of the LFI Model.- 7.3.6 Testing the LFI Model.- 7.4 Applications of Dynamic Intensity Models.- 7.4.1 Estimatin

Ihre Fragen, Wünsche oder Anmerkungen

Ihre Nachricht*
Wie möchten Sie kontaktiert werden?
Ihre E-Mail-Adresse*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.