Buch, Deutsch, 163 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 220 g
Buch, Deutsch, 163 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 220 g
Reihe: Teubner Studienbücher Technik
ISBN: 978-3-519-06117-5
Verlag: Vieweg+Teubner Verlag
bzw. 3) gewidmet. Diese Kapitel unterstreichen den Lehrbuchcharakter des für Studenten geschriebenen Werkes und unterscheiden es von manchen anderen Publikationen.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Prinzipien und Komponenten der optischen Nachrichtenübertragung.- 1.1 Das elektromagnetische Spektrum.- 1.2 Optische Übertragungssysteme.- 1.3 Modulationsverfahren.- 1.4 Senderelemente.- 1.5 Charakteristische Daten und Eigenschaften von Sendedioden.- 1.6 Empfangselemente.- 1.7 Das optische Übertragungsmedium: Lichtwellenleiter.- 1.8 Zur Herstellung von Quarzglasfasem.- 1.9 Optische Kabel und Faserverbindungen.- 1.10 Anwendungen.- 2 Wellenoptik.- 2.1 Übertragungsmedium.- 2.2 Ableitung der Wellengleichung für die Momentanwerte $${\vec e}$$ der elektrischen Feldstärke.- 2.3 Näherung der Wellengleichung für $${\vec e}$$.- 2.4 Ableitung der Wellengleichung für die Momentanwerte $${\vec h}$$ der magnetischen Feldstärke.- 2.5 Näherung der Wellengleichung für $${\vec h}$$.- 2.6 Lösung der skalaren Wellengleichung.- 2.7 Deutung der Lösung als homogene Planwelle.- 2.8 Die harmonische homogene Planwelle.- 2.9 Graphische Darstellungen der harmonischen Planwelle.- 2.10 Polarisation.- 2.11 Komplexe Schreibweise harmonischer Wellen.- 2.12 Zusammenhang zwischen den Feldstärken der homogenen Planwelle und Orientierung der Feldstärken zum Ausbreitungsvektor.- 2.13 Komplexe Dielektrizitätszahl: dielektrische Verluste und Materialdispersion.- 2.14 Wellengruppe: Phasenlaufzeit und Gruppenlaufzeit.- 2.15 Die Gruppenlaufzeitstreuung (chromatische Dispersion).- 2.16 Phasenlaufzeit und Gruppenlaufzeit von Wellen (Moden) in Glasfasern, Wellenleiterdispersion.- 2.17 Überlagerung zweier gleichfrequenter homogener Planwellen: stehende Wellen.- 2.18 Überlagerung zweier gleichfrequenter homogener Planwellen: allgemeiner Fall.- 2.19 Reflexion und Transmission bei senkrechtem Einfall einer homogenen Planwelle auf die ebene Grenzfläche zweier homogener Dielektrika.- 2.20 SchrägerEinfall einer homogenen Planwelle auf die ebene Grenzfläche zweier homogener Dielektrika; Totalreflexion.- 2.21 Klassifizierung von Wellen nach der Phasenlaufzeit.- 2.22 Reflexions-Faktoren einer homogenen Planwelle bei schrägem Einfall auf eine ebene dielektrische Grenzfläche: einfallende Welle elektrisch transversal polarisiert (TE).- 2.23 Fortsetzung: einfallende Welle magnetisch transversal polarisiert (TM); Brewster-Effekt.- 3 Strahlenoptik (Geometrische Optik).- 3.1 Die Eikonalgleichung.- 3.2 Die Strahlendifferentialgleichung.- 3.3 Paraxiale Näherung der Strahlendifferentialgleichung.- 3.4 Fermatsches Prinzip und Brechungsgesetz.- 3.5 Verallgemeinerung des Brechungsgesetzes bei stetigen Brechzahländerungen und Anwendung auf geführte Lichtstrahlen in Fasern.- 3.6 Ableitung der Strahlendifferentialgleichung aus dem Fermatschen Prinzip.- 3.7 Verhältnis von Strahlen- und Wellenoptik und deren Verhältnis zur Mechanik.- 3.8 Anwendung der paraxialen Strahlendifferentialgleichung auf eine Gradientenfaser mit parabolischem Brechzahlprofil.- 3.9 Fortsetzung: Exakte Lösung des Meridionalstrahlverlaufs.- 3.10 Strahlendifferentialgleichung und lokaler Ausbreitungsvektor.- 3.11 WKB-Optik (WKB-Näherung).- 4 Dielektrische Wellenleiter: Wellenausbreitung in Glasfasern.- 4.1 Klassifikation der Wellenformen in vielwelligen Fasern.- 4.2 Stufenprofilfasern: Strahlenoptik der geführten Wellen.- 4.3 Das diskrete Modenspektrum der geführten Wellen.- 4.4 Akzeptanzwinkel der Stufenprofilfaser.- 4.5 Gradientenfaser mit Potenzprofil der Brechzahl; Grundsätzliches zur Signalbandbreite und zum Verlauf geführter Strahlen.- 4.6 Laufzeit meridionaler Strahlen; Modengruppen und Impulsaufweitung in Gradientenfasem mit parabolischem Brechzahlprofil.- 4.7 WKB-Optik der Strahlen (Moden)in vielwelligen Gradientenfasern.- 4.8 Numerische Apertur einer Gradientenfaser.- 4.9 Modelle optischer Sender und Einkoppelwirkungsgrad.- 4.10 Einwellenfasern.