Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Buch, Englisch, 640 Seiten, Format (B × H): 212 mm x 282 mm, Gewicht: 1974 g
ISBN: 978-1-55581-975-0
Verlag: Wiley
The single most comprehensive and authoritative textbook on bacterial molecular genetics
Snyder & Champness Molecular Genetics of Bacteria is a new edition of a classic text, updated to address the massive advances in the field of bacterial molecular genetics and retitled as homage to the founding authors.
In an era experiencing an avalanche of new genetic sequence information, this updated edition presents important experiments and advanced material relevant to current applications of molecular genetics, including conclusions from and applications of genomics; the relationships among recombination, replication, and repair and the importance of organizing sequences in DNA; the mechanisms of regulation of gene expression; the newest advances in bacterial cell biology; and the coordination of cellular processes during the bacterial cell cycle. The topics are integrated throughout with biochemical, genomic, and structural information, allowing readers to gain a deeper understanding of modern bacterial molecular genetics and its relationship to other fields of modern biology.
Although the text is centered on the most-studied bacteria, Escherichia coli and Bacillus subtilis, many examples are drawn from other bacteria of experimental, medical, ecological, and biotechnological importance. The book's many useful features include
* Text boxes to help students make connections to relevant topics related to other organisms, including humans
* A summary of main points at the end of each chapter
* Questions for discussion and independent thought
* A list of suggested readings for background and further investigation in each chapter
* Fully illustrated with detailed diagrams and photos in full color
* A glossary of terms highlighted in the text
While intended as an undergraduate or beginning graduate textbook, Molecular Genetics of Bacteria is an invaluable reference for anyone working in the fields of microbiology, genetics, biochemistry, bioengineering, medicine, molecular biology, and biotechnology.
"This is a marvelous textbook that is completely up-to-date and comprehensive, but not overwhelming. The clear prose and excellent figures make it ideal for use in teaching bacterial molecular genetics."
--Caroline Harwood, University of Washington
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Mikrobiologie
- Naturwissenschaften Biowissenschaften Bakteriologie
- Naturwissenschaften Biowissenschaften Molekularbiologie
- Naturwissenschaften Biowissenschaften Biowissenschaften Genetik und Genomik (nichtmedizinisch)
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Medizinische Mikrobiologie & Virologie
Weitere Infos & Material
Preface xv
Acknowledgments xix
About the Authors 1
Introduction 3
The Biological Universe 5
The Bacteria 5
The Archaea 7
The Eukaryotes 7
What is Genetics? 8
Bacterial Genetics 8
Bacteria Are Haploid 9
Short Generation Times 9
Asexual Reproduction 9
Colony Growth on Agar Plates 9
Colony Purification 9
Serial Dilutions 9
Selections 10
Storing Stocks of Bacterial Strains 10
Genetic Exchange 10
Phage Genetics 10
Phages Are Haploid 11
Selections
with Phages 11
Crosses with Phages 11
A Brief History of Bacterial Molecular Genetics 11
Inheritance in Bacteria 11
Transformation 11
Conjugation 12
Transduction 12
Recombination within Genes 12
Semiconservative DNA Replication 12
mRNA 12
The Genetic Code 12
The Operon Model 12
Enzymes for Molecular Biology 12
Synthetic Genomics 13
What is Ahead 13
1 The Bacterial Chromosome: DNA Structure, Replication, and Segregation 17
DNA Structure 17
The Deoxyribonucleotides 17
The DNA Chain 18
The 5’ and 3’ Ends 18
Base Pairing 20
Antiparallel Construction 20
The Major and Minor Grooves 21
The Mechanism of DNA Replication 21
Deoxyribonucleotide Precursor Synthesis 21
Replication of the Bacterial Chromosome 21
Replication of Double- Stranded DNA 26
Replication Errors 30
Editing 30
RNA Primers and Editing 31
Impediments to DNA Replication 31
Damaged DNA and DNA Polymerase III 31
Mechanisms To Deal with Impediments on Template DNA Strands 32
Physical Blocks to Replication Forks 32
Replication of the Bacterial Chromosome and Cell Division 32
Structure of Bacterial Chromosomes 34
Replication of the Bacterial Chromosome 34
Initiation of Chromosome Replication 34
RNA Priming of Initiation 35
Termination of Chromosome Replication 35
Chromosome Segregation 37
Coordination of Cell Division with Replication of the Chromosome 47
Timing of Initiation of Replication 49
The Bacterial Nucleoid 51
Supercoiling in the Nucleoid 51
Topoisomerases 52
The Bacterial Genome 55
Box 1.1 Structural Features of Bacterial Genomes 37
Box 1.2 Antibiotics That Affect Replication and DNA Structure 54
2 Bacterial Gene Expression: Transcription, Translation, Protein Folding, and Localization 61
Overview 61
The Structure and Function of RNA 62
Types of RNA 62
RNA Precursors 62
RNA Structure 62
RNA Processing and Modification 64
Transcription 64
Structure of Bacterial RNA Polymerase 64
Overview of Transcription 65
Details of Transcription 67
rRNAs and tRNAs 74
RNA Degradation 77
RNases 77
The Structure and Function of Proteins 78
Protein Structure 78
Translation 80
Structure of the Bacterial Ribosome 80
Overview of Translation 83
Details of Protein Synthesis 84
The Genetic Code 92
Polycistronic mRNA 96
Protein Folding and Degradation 98
Protein Chaperones 98
Protein Degradation 101
Protein Localization 101
The Translocase System 101
The Signal Sequence 103
The Targeting Factors 103
The Tat Secretion Pathway 104
Disulfide Bonds 105
Protein Secretion and Export 105
Protein Secretion Systems in Bacteria with an Outer Membrane 106
Protein Secretion in Bacteria That Lack an Outer Membrane 110
Sortases 110
Regulation of Gene Expression 111
Transcriptional Regulation 112
Posttranscriptional Regulation 113
What You Need To Know 114
Open Reading Frames 115
Transcriptional and Translational Fusions 115
Box 2.1 Antibiotic Inhibitors of Transcription 72
Box 2.2 Molecular Phylogeny 75
Box 2.3 Antibiotic Inhibitors of Translation 81
Box 2.4 Mimicry in Translation 91
Box 2.5 Exceptions to the Code 94
3 Bacterial Genetic Analysis: Fundamentals and Current Approaches 123
Definitions 123
Terms Used in Genetics 123
Genetic Names 124
Auxotrophic and Catabolic Mutants 125
Conditional- Lethal Mutants 126
Resistant Mutants 128
Inheritance in Bacteria 128
The Luria and Delbrück Experiment 129
Mutants Are Clonal 130
Esther and Joshua Lederberg’s Experiment 130
Mutation Rates 132
Calculating Mutation Rates 133
Calculating the Mutation Rate from the Rate of Increase in the Proportion of Mutants 135
Types of Mutations 136
Properties of Mutations 136
Base Pair Changes 136
Frameshift Mutations 140
Deletion Mutations 141
Tandem- Duplication Mutations 143
Inversion Mutations 144
Insertion Mutations 145
Reversion versus Suppression 147
Intragenic Suppressors 147
Intergenic Suppressors 147
Genetic Analysis in Bacteria 151
Isolating Mutants 151
Genetic Characterization of Mutants 155
Complementation Tests 160
Genetic Crosses in Bacteria 166
Mapping of Bacterial Markers by Transduction and Transformation 168
Other Uses of Transformation and Transduction 171
Genetic Mapping by Hfr Crosses 172
Perspective 176
Box 3.1 Inversions and the Genetic Map 146
4 Plasmids 181
What is a Plasmid? 181
Naming Plasmids 182
Functions Encoded by Plasmids 182
Plasmid Structure 183
Properties of Plasmids 184
Replication 184
Functions of the ori Region 187
Plasmid Replication Control Mechanisms 193
Mechanisms To Prevent Curing of Plasmids 200
The Par Systems of Plasmids 203
Plasmid Cloning Vectors 206
Examples of Plasmid Cloning Vectors 208
Broad- Host- Range Cloning Vectors 210
Box 4.1 Linear Chromosomes and Plasmids in Bacteria 188
Box 4.2 Determining the Inc Group 191
Box 4.3 Toxin- Antitoxin Systems and Plasmid Maintenance 201
5 Conjugation 215
Overview 215
Classification of Self- Transmissible Plasmids and Integrating Elements 217
The Fertility Plasmid 217
Mechanism of DNA Transfer during Conjugation in Proteobacteria 218
Transfer (tra) Genes 218
The oriT Sequence 221
Efficiency of Transfer 222
Interspecies Transfer of Plasmids 225
Conjugation and Type IV Secretion Systems Capable of Translocating Proteins 225
Mobilizable Plasmids 229
Chromosome Transfer by Plasmids 230
Formation of Hfr Strains of E. coli 230
Transfer of Chromosomal DNA by Integrated Plasmids 230
Chromosome Mobilization 231
Prime Factors 231
Diversity in Transfer Systems 233
Integrating Conjugative Elements 234
SXT/R391 ICE 234
ICEBs1 236
Tn916 237
TnGBS1 and TnGBS2 240
Box 5.1 Pilus- Specific Phages 220
Box 5.2 Delivery of Conditional Plasmids by Conjugation 223
Box 5.3 Gene Exchange between Domains 226
Box 5.4 Conjugation and Synthetic Genomics 232
6 Transformation 245
Natural Transformation 246
Discovery of Transformation 246
Overview of Natural Transformation 247
DNA Uptake Mechanisms 247
Specificity of DNA Uptake 251
DNA Pro cessing after Uptake 253
Natural Transformation as a Tool 253
Regulation of Natural Competence 254
Identification of Competence in Other Organisms 258
Role of Natural Transformation 258
Artificially Induced Competence 260
Chemical Induction 260
Electroporation 261
Protoplast Transformation 261
Box 6.1 Experimental Measurements of DNA Uptake 248