Hessel / Bogaerts / Centi | Plasma-Assisted Nitrogen Fixation for Sustainable Process Industries | Buch | 978-1-394-28301-9 | www.sack.de

Buch, Englisch, 480 Seiten

Hessel / Bogaerts / Centi

Plasma-Assisted Nitrogen Fixation for Sustainable Process Industries


1. Auflage 2026
ISBN: 978-1-394-28301-9
Verlag: Wiley

Buch, Englisch, 480 Seiten

ISBN: 978-1-394-28301-9
Verlag: Wiley


This book provides in-depth insights into plasma-assisted nitrogen fixation, it covers advanced topics and emerging trends, making it a valuable resource for experts in these areas. It offers practical guidance on implementing plasma technology in nitrogen fixation, cost analysis, and case studies, making it relevant for engineers, plant managers, and decision-makers seeking to optimize their ammonia and NOx manufacturing processes.
The book is split into six parts covering Fundamentals of Nitrogen Fixation; Plasma Technology and Plasma Reactors; Plasma-Assisted Nitrogen Fixation; Mechanisms of Nitrogen Fixation; Environmental and Economic Viability; and Advanced Processes of Nitrogen Fixation. The comprehensive structure provides readers with a thorough understanding of plasma-assisted nitrogen fixation, from the fundamental principles to practical applications and future prospects in the field.

Hessel / Bogaerts / Centi Plasma-Assisted Nitrogen Fixation for Sustainable Process Industries jetzt bestellen!

Weitere Infos & Material


About the Editors

Preface

Chapter 1. Fundamentals of ammonia production

Kevin Rouwenhorst, Leon Lefferts

1.1. Introduction to nitrogen fixation

1.2. The Haber-Bosch process

1.3. Production pathways to ammonia

1.4. Novel methods for ammonia synthesis

1.5. Applications of ammonia

1.6. Conclusions

Chapter 2. Fundamentals of NOx production

Filippo Buttignol, Alberto Garbujo, Raffaele Ostuni, Michal Bialkowski and Pierdomenico Biasi

2.1. Introduction

2.2. The Ostwald process

2.2.1.  Catalytic oxidation of ammonia

2.2.2.  NO oxidation to NO2

2.2.3.  Nitrogen oxides absorption and HNO3 production

2.3. Type of processes

2.3.1.  Weak nitric acid

2.3.2.  Concentrated nitric acid

2.4. Environmental protection and treatment of exhaust gases

2.4.1.  Control of NOx emissions

2.4.2.  Control of N2O emissions

2.5. Future trends

2.6. Conclusions

Chapter 3. Introduction to plasma technology

Anthony B Murphy

3.1. Fundamental concepts

3.1.1. Types of plasma

3.1.2.  Scaling parameters

3.2. Plasma generation

3.3. Plasma chemistry

3.3.1.  Inelastic collisions between electrons and heavy particles

3.3.2.  Inelastic collisions between heavy particles

3.3.3.  Equilibrium in plasmas

3.4. Plasma technology

3.4.1.  Low-pressure plasma applications

3.4.2.  Non-equilibrium atmospheric-pressure plasma applications

3.4.3.  Thermal plasma applications

3.5. Role of plasma in ammonia and NOx synthesis

3.6. Conclusions

Chapter 4. Plasma reactors

Evgeny Rebrov

4.1. Introduction

4.2. Microwave & RF plasma

4.2.1.  Microwave plasma torch

4.2.2.  Surfaguide-type discharge

4.2.3.  RF plasma torch

4.3. Spark and high-frequency pulsed discharges

4.4. Gliding arc

4.5. Propeller arc

4.6. Glow discharge

4.7. Dielectric barrier discharge

4.7.1.  Micro-DBD reactors

4.7.2.  DBD reactors for N2/water plasma

4.8. Conclusions and outlook

Chapter 5. Plasma assisted ammonia synthesis

Ruiz-Martín M., Megías-Sánchez A., Marín-Meana S., Oliva-Ramírez M., González-Elipe A.R., Gómez-Ramírez A.

5.1. Introduction

5.2. Advanced plasma technologies for ammonia synthesis

5.2.1.  Ammonia synthesis reactions and plasma types

5.2.2.  Effects of plasma reactor operational conditions

5.3. Plasma-catalysis of ammonia: seeking synergies to improving energy efficiency

5.3.1.  Plasma-catalysis: A brief introduction

5.3.2.  Barrier materials and catalysts in packed-bed plasma reactors for NH3 synthesis

5.3.3.  New paradigms in plasma catalysis for ammonia synthesis

5.4. Conclusions

Chapter 6. Plasma-assisted NOx synthesis

Tianyu Li, Haoxuan Jiang, Rusen Zhou, Jing Sun, Renwu Zhou

6.1.  Introduction

6.2.  The mechanism of plasma-assisted nitrogen oxidation

6.3.  Nitrogen oxidation achieved by different types of plasma

6.4.  Plasma-water-based nitrogen fixation

6.5.  Conclusion and outlook

Chapter 7. Ammonia synthesis with plasma catalysis: mechanisms

Kevin Rouwenhorst, Leon Lefferts

7.1.  Introduction

7.2.  Methods to study mechanisms in catalysis

7.3.  Experimental kinetics: from catalysis to plasma catalysis

7.4.  Beyond equilibrium and reverse reactions

7.5.  Effect of catalyst on plasma

7.6.  Kinetics of plasma-catalytic ammonia synthesis

7.7.  Mechanism of plasma-catalytic ammonia synthesis

7.7.1.  Dominant pathway: catalytic dissociation of excited N2

7.7.2.  Dominant pathway: N2 dissociation in plasma

7.7.3.  Surface intermediate species

7.7.4.  Other mechanisms

7.8.  Energy efficiency

7.9.  Conclusions

Chapter 8. Mechanisms of plasma-driven NOx synthesis

Weitao Wang, Xin Tu

8.1.  Introduction

8.2.  NOx synthesis without a catalyst

8.2.1.  Plasma physics relevant to NOx formation

8.2.2.  Plasma chemistry and key reaction mechanisms

8.2.3.  Factors influencing reaction pathways

8.2.4.  Mechanistic insights from experimental studies

8.3.  Plasma-catalytic NOx synthesis

8.4.  Conclusion and outlook

Chapter 9. Environmental impact and sustainability aspects of plasma based nitrogen fixation

Nam Nghiep Tran, Nguyen Van Duc Long, Muhammad Yousaf Arshad, Jose Luis Osorio Tejada, Volker Hessel

9.1.  Introduction

9.2.  Environmental benefits of plasma-assisted nitrogen fixation

9.2.1. Carbon footprint analysis

9.2.2. Comparison with the Haber-Bosch process

9.2.3. Energy efficiency and consumption

9.2.4. Reduction in greenhouse gas emissions

9.2.5. Integration with renewable energy sources

9.3.  Circular economy considerations

9.3.1. PANF within the circular economy model

9.3.2. Resource utilisation and waste minimisation

9.3.3. Closed-Loop systems and recycling opportunities

9.3.4. Decentralisation via small-scale production

9.4.  Life Cycle Assessment (LCA)

9.4.1. LCA of plasma-assisted nitrogen fixation – Overview

9.4.2. Benchmarking against the Haber-Bosch Process

9.4.3. Environmental impact analysis (including CO2 emissions and pollutants)

9.5.  Perspectives for sustainable plasma-based nitrogen fixation

9.6.  Conclusion and outlook

Chapter 10. Industrial applications and economic viability of plasma-based nitrogen fixation

Magnus Nyvold, Rune Ingels

10.1.  Introduction

10.2.  Overview of the reactive nitrogen industry

10.3. Conventional nitrogen fixation

10.3.1.  Fossil-based ammonia production

10.3.2.  Electricity based ammonia production

10.3.3.  Nitric acid production

10.3.4.  Overall performance of nitrate production

10.4. Plasma-based nitrate production

10.4.1. Stand-alone nitric acid process

10.4.2. Integrated nitric acid process

10.4.3. Nitrate enrichment of organic substrates

10.4.4. Other avenues

10.5. Economic comparison

10.6. Competitive landscape

10.7. Conclusion

Chapter 11. Microplasma for Nitrogen Fixation

Liangliang Lin

11.1.  Introduction

11.2.  Microplasma configurations for nitrogen fixation

11.3. Microplasma-based process for nitrogen fixation

11.3.1.  NOx

11.3.2.  NH3

11.3.3.  Nitride, carbonitride, and oxynitride nanomaterials

11.3.4.  N-doped nanomaterials

11.4. Challenges and perspectives for microplasma nitrogen fixation

11.5. Conclusions

Chapter 12. Plasma-liquid interaction for nitrogen fixation

Tianqi Zhang, Jungmi Hong and Patrick Cullen

12.1.  Introduction

12.2.  Plasma systems for plasma-liquid discharges

12.3.  Mechanisms of nitrogen fixation in plasma-liquid systems

12.3.1.  Physical aspects of plasma-liquid interactions

12.3.2.  Chemical aspect of plasma-liquid interactions

12.3.3. Mass transport through the plasma-liquid interface

12.4.  Key challenges

12.4.1. Diagnostics

12.4.2. Modelling

12.5.  Conclusion

Chapter 13. Industrial applications and economic viability of plasma-based nitrogen fixation

Plasma-electrochemistry for nitrogen fixation

Susanta Bera, Dimitrios Zagoraios, Mihalis N. Tsampas

13.1.  Introduction

13.2.  Motivation for plasma-enabled N2 oxidation followed by electrochemical reduction

13.3.  Conventional and plasma-enabled NOx feedstock

13.4.  Definition of performance metrics

13.5.  Electrochemical NOx conversion to NH3 - eNOxRR

13.5.1.  Electrochemical conversion with NOx in liquid phase stream

13.5.2.  Electrochemical conversion with NOx in gas-phase or catholyte-free stream

13.5.3. Overview of the eNOxRR studies

13.6. Plasma-enabled electrochemical studies for NOx conversion to NH3 – pNOR-eNOxRR

13.6.1.  Integration approaches

13.6.2.  Alternative plasma electrochemical systems

13.6.3.  Experimental pNOR-eNOxRR studies

13.6.4.  Overview of pNOR-eNOxRR systems

13.7.  Implementation at industrial level

13.8.  Key challenges and future outlook

13.8.1.  Electrochemical systems

13.8.2.  Operational considerations

13.8.3.  Product separation

13.8.4.  Scalability and process integration

13.9.  Conclusions

Chapter 14. Analytical techniques for plasma catalysis

Christopher Hardacre, Sarayute Chansai, and Shanshan Xu

14.1.  Optical spectroscopy

14.1.1.  Introduction

14.1.2.  Experimental set-up

14.1.3. OES spectrum and interpretation for ammonia synthesis

14.1.4. OES analysis and proposed reaction mechanism for ammonia synthesis

14.1.5. OES analysis for plasma dynamics

14.1.6. TDLAS analysis for plasma dynamics and kinetics

14.2.  Infrared Spectroscopy

14.2.1.  Introduction

14.2.2.  In-situ plasma-IR/DRIFTS cell designs and set-ups

14.2.3.  In-plasma in-situ DRIFTS analysis for NOx reduction.

14.2.4.  Post plasma in-situ IR analysis for ammonia synthesis

14.3.  Summary

Chapter 15. Perspectives in plasma-based nitrogen fixation for fertilizer applications

Yury Gorbanev and Annemie Bogaerts

15.1. Nitrogen compounds used for soil fertilization

15.2. Fertilizer production: Haber-Bosch-Ostwald process and plasma for nitrogen fixation

15.3. Metrics of various pathways of plasma-based nitrogen fixation

15.4. Perspectives of NH4NO3 production by plasma-based nitrogen fixation

15.5.  Plasma-based nitrogen fixation for reduction of NH3 emissions and simultaneous fertilizer production

15.6.  Conclusion and outlook: Challenges and perspectives of plasma-based nitrogen fixation



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.