Buch, Englisch, 132 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 236 g
Reihe: SpringerBriefs in Applied Statistics and Econometrics
What is the Meaning of Random Error?
Buch, Englisch, 132 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 236 g
Reihe: SpringerBriefs in Applied Statistics and Econometrics
ISBN: 978-3-030-99090-9
Verlag: Springer International Publishing
The central inspiration behind the text comes from the scientific debate about good statistical practices and the replication crisis. Calls for statistical reform include an unprecedented methodological warning from the American Statistical Association in 2016, a special issue “Statistical Inference in the 21st Century:A World Beyond p < 0.05” of The American Statistician in 2019, and a widely supported call to “Retire statistical significance” in Nature in 2019.
The book elucidates the probabilistic foundations and the potential of sample-based inferences, including random data generation, effect size estimation, and the assessment of estimation uncertainty caused by random error. Based on a thorough understanding of those basics, it then describes the p-value concept and the null-hypothesis-significance-testing ritual, and finally points out the ensuing inferential errors. This provides readers with the competence to avoid ill-guided statistical routines and misinterpretations of statistical quantities in the future.
Intended for readers with an interest in understanding the role of statistical inference, the book provides a prudent assessment of the knowledge gain that can be obtained from a particular setof data under consideration of the uncertainty caused by random error. More particularly, it offers an accessible resource for graduate students as well as statistical practitioners who have a basic knowledge of statistics. Last but not least, it is aimed at scientists with a genuine methodological interest in the above-mentioned reform debate.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
- 1. Introduction. - 2. The Meaning of Scientific and Statistical Inference. - 3. The Basics of Statistical Inference: Simple Random Sampling. - 4. Estimation Uncertainty in Complex Sampling Designs. - 5. Knowledge Accumulation Through Meta-analysis and Replications. - 6. The p-Value and Statistical Significance Testing. - 7. Statistical Inference in Experiments. - 8. Better Inference in the 21st Century: A World Beyond p < 0.05.