Hovanski / Mishra / Sato | Friction Stir Welding and Processing IX | E-Book | www.sack.de
E-Book

E-Book, Englisch, 315 Seiten

Reihe: The Minerals, Metals & Materials Series

Hovanski / Mishra / Sato Friction Stir Welding and Processing IX


1. Auflage 2017
ISBN: 978-3-319-52383-5
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 315 Seiten

Reihe: The Minerals, Metals & Materials Series

ISBN: 978-3-319-52383-5
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This books presents a current look at friction stir welding technology from application to characterization and from modeling to R&D. It is a compilation of the recent progress relating to friction stir technologies including derivative technologies, high-temperature applications, industrial applications, dissimilar alloy/materials, lightweight alloys, simulation, and characterization. With contributions from leaders and experts in industry and academia, this will be a comprehensive source for the field of Friction Stir Welding and Processing.

The Minerals, Metals & Materials Society (TMS) is a member-driven international professional society dedicated to fostering the exchange of learning and ideas across the entire range of materials science and engineering, from minerals processing and primary metals production, to basic research and the advanced applications of materials. Included among its nearly 13,000 professional and student members are metallurgical and materials engineers, scientists, researchers, educators, and administrators from more than 70 countries on six continents.

Hovanski / Mishra / Sato Friction Stir Welding and Processing IX jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;About the Editors;11
4;High Temperature Applications I;15
5;1 Effect of Thermal Aging on the Corrosion and Mechanical Properties of Friction Stir Welded 250 Grade Maraging Steel;16
5.1;Abstract;16
5.2;Introduction;16
5.3;Experimental;17
5.4;Results and Discussion;19
5.5;Conclusions;23
5.6;Acknowledgements;23
5.7;References;24
6;2 Friction Stir Processing of 304L Stainless Steel for Crack Repair;25
6.1;Abstract;25
6.2;Introduction;25
6.3;Experimental Procedures;27
6.4;Results and Discussion;28
6.5;Conclusions;32
6.6;Acknowledgements;33
6.7;References;33
7;3 Influence of Underwater Operation on Friction Stir Welding of Medium Carbon Steel;35
7.1;Abstract;35
7.2;Introduction;35
7.3;Experimental Procedures;36
7.4;Results and Discussion;37
7.5;Conclusions;39
7.6;Acknowledgements;40
7.7;References;40
8;4 Feasibility of Iridium Containing Nickel Based Superalloy Tool to Friction Stir Spot Welding of High Strength Steel;41
8.1;Abstract;41
8.2;Introduction;41
8.3;Experimental Procedures;43
8.4;Results and Discussion;44
8.5;Conclusion;47
8.6;Acknowledgements;47
8.7;References;47
9;High Temperature Applications II;48
10;5 Development of Friction Stir Processing for Repair of Nuclear Dry Cask Storage System Canisters;49
10.1;Abstract;49
10.2;Introduction;49
10.3;Experimental Approach;50
10.3.1;SCC Repair;50
10.4;Results and Discussion;51
10.4.1;Process Development;51
10.4.2;Heat Affected Zone Sensitization Remediation;54
10.4.3;Tool Life;55
10.4.4;Future Work;55
10.5;Conclusions;56
10.6;References;56
11;6 Performance of Tungsten-Based Alloy Tool Developed for Friction Stir Welding of Austenitic Stainless Steel;57
11.1;Abstract;57
11.2;Introduction;57
11.3;Experimental Procedures;58
11.4;Results and Discussion;59
11.5;Summary;62
11.6;References;62
12;7 Investigation of Process Parameters for Friction Stir Processing (FSP) of Ti-6Al-4V Alloy;63
12.1;Abstract;63
12.2;Introduction;64
12.3;Material and Experimental Work;64
12.3.1;Material Composition and FSP Parameters;64
12.3.2;Tool Design;65
12.3.2.1;Tool Material;65
12.3.2.2;Tool Geometry;65
12.4;Results and Discussion;66
12.4.1;Process Window for FSP;66
12.4.2;Microstructure Evolution;67
12.4.3;Micro-Hardness;71
12.5;Conclusions;72
12.6;References;72
13;Derivative Technologies;75
14;8 Solid-State Joining of Thick-Section Dissimilar Materials Using a New Friction Stir Dovetailing (FSD) Process;76
14.1;Abstract;76
14.2;Introduction;76
14.3;Materials and Experimental Procedure;77
14.4;Modeling and Simulation;78
14.4.1;Optimization of Dovetail Numbers and Weld Passes;78
14.5;Results and Discussion;79
14.5.1;Weld Microstructural Analysis;80
14.5.2;Tensile Tests;83
14.6;Conclusions;85
14.7;Acknowledgements;85
14.8;References;86
15;9 Joining Aerospace Aluminum 2024-T4 to Titanium by Friction Stir Extrusion;87
15.1;Abstract;87
15.2;Introduction;88
15.3;Materials and Methods;88
15.4;Results and Discussion;89
15.4.1;Groove Shapes;89
15.4.2;RPM and Traverse;91
15.4.3;Tensile Results;93
15.4.4;Discussion;94
15.5;Conclusions;96
15.6;Acknowledgements;96
15.7;References;96
16;Dissimilar Metal T-Joint of Aluminum and Steel Formed by Friction Stir Extrusion;98
16.1;Introduction;98
16.2;Method;99
16.3;Results and Discussion;101
16.4;Conclusions;103
16.5;References;103
17;Lightweight Applications;104
18;11 Friction Stir Welding of Thick Section Aluminium Alloys—New Techniques;105
18.1;Abstract;105
18.2;Introduction;105
18.3;Conclusion;114
18.4;Reference;114
19;12 Friction Stir Weld Lap Joint Properties in Aeronautic Aluminium Alloys;115
19.1;Abstract;115
19.2;Introduction;115
19.3;Experimental Details;116
19.4;Results and Discussion;117
19.4.1;Weld Cross Sectional Characterization;118
19.4.2;Microhardness Analysis;120
19.5;Conclusions;122
19.6;References;123
20;Friction Stir Welding of Thick Aluminium Welds---Challenges and Perspectives;124
20.1;Introduction;124
20.2;Experimental Procedure;125
20.3;Results and Discussion;126
20.4;Conclusions;128
20.5;References;129
21;14 High-Speed FSW Aluminum Alloy 7075 Microstructure and Corrosion Properties;130
21.1;Abstract;130
21.2;Introduction;130
21.3;Experiments;132
21.4;Results and Discussion;132
21.4.1;Metallographic Imaging;132
21.4.2;Microstructural Characterization;133
21.4.3;Statistical Characterization of the IMPs;135
21.4.4;Corrosion Test;137
21.5;Conclusions;139
21.6;References;140
22;15 Flow Features in Shoulder Zone During Scroll Tool Friction Stir Welding Thick 6061 Aluminum Plates;141
22.1;Abstract;141
22.2;Introduction;142
22.3;Experimental Procedures;143
22.4;Results and Discussions;143
22.4.1;Post-weld Profile;143
22.4.2;Flow Pattern in Transverse Cross Section;144
22.4.3;Flow Pattern Along Longitudinal Cross Section;145
22.5;Concluding Remarks;146
22.6;Acknowledgements;147
22.7;References;147
23;Dissimilar Applications;148
24;16 Joining Dissimilar Material Using Friction Stir Scribe Technique;149
24.1;Abstract;149
24.2;Background and Introduction;150
24.3;Materials and Experimental Details;151
24.4;Results and Discussions;152
24.5;Summary;157
24.6;Acknowledgements;157
24.7;References;157
25;17 Influence of Stir Flow on Joint Quality During Friction Stir Lap Al-to-Cu Welding;158
25.1;Abstract;158
25.2;Introduction;158
25.3;Experimental Procedures;159
25.4;Results and Discussion;160
25.5;Conclusions;166
25.6;References;166
26;18 A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding;168
26.1;Abstract;168
26.2;Introduction;169
26.3;Experimental Procedure;169
26.3.1;Friction Stir Welding;169
26.3.2;Microscopy and Hardness;170
26.3.3;Model Development;171
26.3.4;Discussion;172
26.3.4.1;Material Flow Behavior;172
26.3.5;Temperature Distribution and Influence on Hardness;175
26.4;Conclusions;176
26.5;Acknowledgements;177
26.6;References;177
27;19 Realization of Ultrasound Enhanced Friction Stir Welded Al/Mg- and Al/Steel-Joints: Process and Robustness, Mechanical and Corrosion Properties;179
27.1;Abstract;179
27.2;Motivation;180
27.3;Experimental Procedure;180
27.4;Results and Discussion;182
27.5;Summary;193
27.6;Acknowledgements;193
27.7;References;194
28;Industrial Applications;195
29;20 Friction Stir Welding Process Development of AA7075 for Hot Stamping Applications;196
29.1;Abstract;196
29.2;Introduction;197
29.3;Experimental Procedure;197
29.4;Results;201
29.4.1;Weld Evaluation;201
29.4.2;Mechanical Properties;204
29.5;Conclusion;207
29.6;References;207
30;21 A Novel Approach for Joining EN AW 1050 Stranded Wire and EN CW 004A Contact Elements by Friction Stir Spot Bonding;209
30.1;Abstract;209
30.2;Introduction;209
30.3;Experimental Setup;213
30.4;Conclusion;217
30.5;Acknowledgements;218
30.6;References;218
31;22 Joining Al 6061 to ZE41A Mg Alloy by Friction Stir Welding Using a Cold Spray Transition Joint;219
31.1;Abstract;219
31.2;Introduction;220
31.2.1;The Cold Spray Process;220
31.2.2;Importance of Joining Dissimilar Materials;221
31.3;Experimental Procedure;222
31.3.1;Cold Spray Processing;222
31.3.2;Friction Stir Welding;223
31.3.3;Microstructural Analysis Procedure;224
31.3.4;Microhardness Testing Procedure;224
31.3.5;Mechanical Test Procedures;225
31.4;Results;225
31.4.1;Microstructural Examination of Cold Spray Deposits;225
31.4.2;Microstructural Examination of the FSW Samples;226
31.4.3;Microhardness Testing;228
31.4.4;Triple Lug Shear Testing;229
31.4.5;Tension Testing;230
31.5;Discussion;231
31.6;Conclusions;232
31.7;References;233
32;23 Refill Friction Stir Spot Joining for Aerospace Aluminum Alloys;235
32.1;Abstract;235
32.2;Introduction;235
32.3;Experimental Condition;237
32.4;Results and Discussion;240
32.5;Summary;244
32.6;Acknowledgements;244
32.7;References;244
33;Control and Simulation;245
34;24 Depth and Temperature Control During Friction Stir Welding of 5 cm Thick Copper Canisters;246
34.1;Abstract;246
34.2;Background;247
34.3;Depth Control;248
34.4;Depth Sensors;249
34.5;Depth Measurements;250
34.6;The Depth Controller;250
34.7;Results;251
34.8;Conclusions;256
34.9;References;257
35;25 Predicting Lap Shear Strength for Friction Stir Scribe Joining of Dissimilar Materials;258
35.1;Abstract;258
35.2;Introduction;259
35.3;Friction Stir Scribe Process;259
35.4;FSS Lap Joint Modeling;261
35.5;Results;262
35.6;Conclusions;263
35.7;Acknowledgements;264
35.8;References;264
36;26 Simultaneous Independent Control of Tool Axial Force and Temperature in Friction Stir Processing;265
36.1;Abstract;265
36.2;Introduction;265
36.3;Copper Rotors;266
36.4;Thick Section Sensitized 304;269
36.5;High Speed FSP in Thin Sheet Aluminum;270
36.6;Conclusions;270
36.7;References;271
37;27 Process Force Reduction During Robotic Friction Stir Welding of Aluminum Alloys with Reduced Tool Aspect Ratios;272
37.1;Abstract;272
37.2;Introduction;272
37.3;Experimental Procedure;274
37.4;Results and Discussion;276
37.5;Conclusion;279
37.6;Acknowledgements;280
37.7;References;280
38;Poster Session;281
39;28 Friction Stir Processing of 2507 Super Duplex Stainless Steel: Microstructure and Corrosion Behaviour;282
39.1;Abstract;282
39.2;Introduction;283
39.3;Experimental Procedures;283
39.4;Results and Discussion;285
39.4.1;Microstructural Characterization;285
39.4.2;Potentiodynamic Polarization Measurements;285
39.4.3;Capacitance Measurement;286
39.5;Conclusions;288
39.6;References;288
40;29 Effect of Heat Treatment on Friction-Stir-Processed Nanodispersed AA7075 and 2024 Al Alloys;290
40.1;Abstract;290
40.2;Introduction;291
40.3;Experimental Work;292
40.3.1;Preparation of Samples of 2024;292
40.3.2;Preparation of Samples of 7075;293
40.3.3;Microstructural Examination;293
40.3.4;Mechanical Testing;293
40.4;Results and Discussion;294
40.4.1;Mechanical Properties of AA2024;294
40.4.2;Mechanical Properties of AA7075;295
40.4.3;Microstructure Characterization of T6 Heat Treated FSP AA2024 Alloy;297
40.4.4;Microstructure Characterization of T6 Heat Treated FSP AA7075 Alloy;299
40.5;Conclusions;301
40.6;References;301
41;30 Numerical Analysis of FSW Employing Discrete Element Method;303
41.1;Abstract;303
41.2;Introduction;303
41.3;The Discrete Element Method;304
41.4;Heat Flow Analysis Method;306
41.5;Heat Generation;307
41.6;Analysis Result;308
41.7;Conclusion;311
41.8;Acknowledgements;311
41.9;References;311
42;Author Index;312
43;Subject Index;314



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.