Hunyadi Murph / Larsen / Coopersmith | Anisotropic and Shape-Selective Nanomaterials | E-Book | www.sack.de
E-Book

E-Book, Englisch, 471 Seiten

Reihe: Nanostructure Science and Technology

Hunyadi Murph / Larsen / Coopersmith Anisotropic and Shape-Selective Nanomaterials

Structure-Property Relationships
1. Auflage 2017
ISBN: 978-3-319-59662-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

Structure-Property Relationships

E-Book, Englisch, 471 Seiten

Reihe: Nanostructure Science and Technology

ISBN: 978-3-319-59662-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book reviews recent advances in the synthesis, characterization, and physico-chemical properties of anisotropic nanomaterials. It highlights various emerging applications of nanomaterials, including sensing and imaging, (bio)medical applications, environmental protection, plasmonics, catalysis, and energy. It provides an excellent and comprehensive overview of the effect that morphology and nanometric dimension has on the physico-chemical properties of various materials and how this leads to novel applications.

?Prof. Dr. Simona Hunyadi Murph is an internationally recognized expert in the fields of nanoscience and nanotechnology. Dr. Murph is a Principal Scientist in the National and Homeland Security Directorate at Savannah River National Laboratory (SRNL) and an Adjunct Professor at the Department of Physics and Astronomy, the University of Georgia (UGA), USA. She is the founder and manager of the SRNL's Group for Innovation and Advancements in NanoTechnology Sciences (GIANTS) program, which is intended to advance young scholars' knowledge and skills in the many fields of nanoscience. Her group's research focuses on the design and control of fabrication for colloidal materials with functional properties for sensing and imaging, catalysis, bio-medical and environmental applications, plasmonics, energy conversion and storage. The remarkable advances made by Dr. Murph and her team in the field of nanotechnology have led to numerous publications, awards, grants, invention disclosures, and patents. She holds a PhD in Chemistry/Nanotechnology from the University of South Carolina, USA, an Education Specialist/Educational Leadership (EdS) degree from Augusta University, USA, and both a Master of Science (MS) in Chemistry and Bachelor of Science (BS) in Chemistry/Physics with a minor in Education from Babes-Bolyai University in Romania.
Dr. George K. Larsen is a Senior Scientist at the Savannah River National Laboratory (SRNL). After receiving a Bachelor of Arts (BA) and Bachelor of Science (BS) in Philosophy and Physics from Piedmont College, USA, Dr. Larsen attended the University of Georgia, earning a PhD in Physics. Dr. Larsen's research concentrates on the properties and applications of nanostructures, covering a range of topics from clean energy to the electrical properties of tilted nanorod arrays. At the SRNL, Dr. Larsen's work focuses on the exploitation of nanostructures for remote heat generation, photocatalysis, hydrogen production, and radiation safety, among others.
Dr. Kaitlin J. Coopersmith is a Senior Scientist at the Savannah River National Laboratory in Aiken, SC, USA. She received her PhD in Chemistry from Syracuse University, USA and her Bachelor of Science (BS) in Chemistry from the State University of New York at Potsdam. Her research interests include the synthesis and functionalization of metal and semiconductor nanoparticles for sensing, drug delivery, energy transfer, gas adsorption, and alternative heating mechanisms.

Hunyadi Murph / Larsen / Coopersmith Anisotropic and Shape-Selective Nanomaterials jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Editors;10
4;Introduction and Fundamentals;12
5;1 An Introduction to Nanotechnology;13
5.1;Abstract;13
5.2;References;15
6;2 Nanoscale Materials: Fundamentals and Emergent Properties;16
6.1;Abstract;16
6.2;2.1 Introduction;16
6.2.1;2.1.1 Dimensionality and Optical Properties;17
6.2.2;2.1.2 Polarization and Anisotropy;21
6.2.3;2.1.3 Crystalline Anisotropy;24
6.2.4;2.1.4 Anisotropic Nanoparticle Structures;27
6.2.4.1;2.1.4.1 Spheres;28
6.2.4.2;2.1.4.2 Rods, Wires and Tubes;29
6.2.4.3;2.1.4.3 Cubes, Hexagons, Triangles;30
6.2.4.4;2.1.4.4 Branched and Other Shapes;31
6.3;2.2 Conclusions;33
6.4;References;33
7;3 Synthetic Strategies for Anisotropic and Shape-Selective Nanomaterials;38
7.1;Abstract;38
7.2;3.1 Introduction;38
7.2.1;3.1.1 Bottom-Up Fabrication: The Chemical Approach;40
7.2.1.1;3.1.1.1 Overview;40
7.2.1.2;3.1.1.2 Chemical Reduction;41
7.2.1.3;3.1.1.3 Seed Mediated Approach;43
7.2.2;3.1.2 Solvothermal and Hydrothermal Synthesis;55
7.2.2.1;3.1.2.1 Microwave Irradiation;55
7.2.3;3.1.3 Self-assembly;56
7.3;3.2 Top-Down Fabrication: The Engineering Approach;59
7.3.1;3.2.1 Overview;59
7.3.2;3.2.2 Nano-Lithography;60
7.3.2.1;3.2.2.1 Photolithography;60
7.3.2.2;3.2.2.2 Scanning Beam Lithography;62
7.3.2.3;3.2.2.3 Scanning Probe Lithography;64
7.3.3;3.2.3 Pattern Transfer and Templates;65
7.3.3.1;3.2.3.1 Nanosphere Lithography;66
7.3.3.2;3.2.3.2 Spontaneously and Naturally Occurring Templates;67
7.3.4;3.2.4 Thin Film Growth;68
7.3.4.1;3.2.4.1 Physical Vapor Deposition;68
7.3.4.2;3.2.4.2 Chemical Vapor Deposition;69
7.4;3.3 Classification;71
7.4.1;3.3.1 Metal and Metal Oxides;71
7.4.2;3.3.2 Semiconductor Nanostructures;74
7.4.3;3.3.3 Hybrid Nanostructures;75
7.4.4;3.3.4 Carbon Nanostructures;76
7.5;3.4 Conclusions;77
7.6;References;78
8;4 Characterization of Anisotropic and Shape-Selective Nanomaterials: Methods and Challenges;87
8.1;Abstract;87
8.2;4.1 Overview;87
8.3;4.2 Structural and Chemical Characterization;88
8.3.1;4.2.1 Microscopy;88
8.3.2;4.2.2 Diffraction and Scattering Techniques;91
8.3.2.1;4.2.2.1 Dynamic Light Scattering;91
8.3.2.2;4.2.2.2 X-ray Scattering and Diffraction;92
8.3.2.3;4.2.2.3 Electron Diffraction;94
8.3.3;4.2.3 Spectroscopic Techniques;95
8.3.3.1;4.2.3.1 Optical Spectroscopy;96
8.3.3.2;4.2.3.2 Polarization-Dependent Measurements;98
8.3.3.3;4.2.3.3 Other Spectroscopies;101
8.4;4.3 “Bulk” Property Characterization;101
8.5;4.4 Conclusion;103
8.6;References;103
9;Effect of the Morphology and the Nanometric Dimension of Materials on Their Physico-Chemical Properties;110
10;5 Anisotropic Metallic and Metallic Oxide Nanostructures-Correlation Between Their Shape and Properties;111
10.1;Abstract;111
10.2;5.1 Sensing and Optical Imaging;111
10.2.1;5.1.1 Sensing via Inelastic Light Scattering-Surface-Enhanced Raman Scattering;113
10.2.2;5.1.2 Sensing Based on Surface-Enhanced Fluorescence (SEF);118
10.2.3;5.1.3 Sensing Based on Nanoparticle’s Aggregation-Colorimetric Sensors;120
10.2.4;5.1.4 Sensing Based on Plasmon Shifts with Local Refractive Index;122
10.3;5.2 Medical and Biological Applications;123
10.3.1;5.2.1 Metallic Nanostructures;124
10.3.2;5.2.2 Non-metallic Nanostructures;129
10.4;5.3 Catalysis and Electrocatalysis;130
10.5;5.4 Environmental Applications;134
10.5.1;5.4.1 Detection and Sequestration of Environmental Contaminants;135
10.5.2;5.4.2 Detection and Destruction of Environmental Contaminants;136
10.6;5.5 Energy Related Applications;139
10.6.1;5.5.1 Conversion of Solar Energy to Fuel;139
10.6.2;5.5.2 Energy Storage Materials;144
10.7;5.6 Photothermal Applications;145
10.8;5.7 Self-assembled Nanostructures;147
10.9;5.8 Conclusions;150
10.10;References;150
11;6 Putting Nanoparticles to Work: Self-propelled Inorganic Micro- and Nanomotors;158
11.1;Abstract;158
11.2;6.1 Introduction;158
11.3;6.2 Synthetic Nanomotor Design;161
11.3.1;6.2.1 Synthesis and Characterization;161
11.3.2;6.2.2 Efficiency;162
11.4;6.3 Propulsion Routes;163
11.4.1;6.3.1 External Propulsion;163
11.4.1.1;6.3.1.1 Acoustic;163
11.4.1.2;6.3.1.2 Optical;165
11.4.1.3;6.3.1.3 Magnetic;166
11.4.2;6.3.2 Chemical Propulsion;166
11.4.2.1;6.3.2.1 Diffusiophoresis;167
11.4.2.2;6.3.2.2 Bubble Propulsion;169
11.4.3;6.3.3 Multiple Energy Sources;170
11.4.4;6.3.4 Conclusions and Future Outlook;171
11.5;References;171
12;7 Prospects for Rational Control of Nanocrystal Shape Through Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Approaches;174
12.1;Abstract;174
12.2;7.1 Overview;175
12.3;7.2 Influence of Shape on Electronic Properties of Colloidal Nanocrystals;176
12.4;7.3 Mechanisms of Anisotropic Growth and Erosion;178
12.5;7.4 Enforcing Isotropic Growth with Alternating Layer Approaches;182
12.6;7.5 Methods;184
12.6.1;7.5.1 Colloidal SILAR (Homogeneous Solution);184
12.6.2;7.5.2 Colloidal “Atomic Layer Deposition”;185
12.7;7.6 Precursors;186
12.8;7.7 Analysis of the SILAR Mechanism in Colloidal NC Processes;194
12.8.1;7.7.1 Dose Dependence in c-SILAR;197
12.8.2;7.7.2 Solvent Dependence of Precursor Conversion in c-SILAR;200
12.8.3;7.7.3 Electrochemical In Situ Monitoring;204
12.8.4;7.7.4 XPS Monitoring;205
12.9;7.8 Rational Construction of Anisotropic Colloidal Nanocrystals with Alternating Layer Approaches;206
12.10;7.9 Alternating Layer Growth on Supported Nanostructures;207
12.11;7.10 Alternating Layer Growth on Anisotropic Colloidal Nanocrystal Cores;210
12.11.1;7.10.1 Wurtzite Nanorods;211
12.11.2;7.10.2 Colloidal Nanoplatelets with Wurtzite Structure;214
12.11.3;7.10.3 Colloidal Nanoplatelets with Zincblende Structure;215
12.11.4;7.10.4 Colloidal Nanowires;216
12.12;7.11 Regioselective Growth Under SILAR Conditions;218
12.12.1;7.11.1 Regioselective Growth Under Saturating Conditions;219
12.12.2;7.11.2 Shape Control Via Reagent Dosing;219
12.13;7.12 Applications;221
12.13.1;7.12.1 Double Quantum Dots and Related Dual-Emission Structures for Temperature Measurement and Upconversion;222
12.13.2;7.12.2 Cell Membrane Voltage Sensing;223
12.13.3;7.12.3 Fluorescence Anisotropy in 1D and 2D Nanocrystals;224
12.14;7.13 Concluding Remarks;226
12.15;References;227
13;8 Plasmon Drag Effect. Theory and Experiment;238
13.1;Abstract;238
13.2;8.1 Introduction;238
13.3;8.2 Experiment;243
13.3.1;8.2.1 Photoinduced Electric Effects in Flat Metal Films;243
13.3.2;8.2.2 Experiment. PLDE in Nanostructured Films;246
13.3.3;8.2.3 Effect of Highly Nonhomogeneous Illumination;250
13.4;8.3 PLDE Theory;252
13.4.1;8.3.1 Macroscopic Forces Acting on Polarized Matter;252
13.4.2;8.3.2 The Quantum Aspect of Relationship Between PLDE Emf and Absorption;254
13.4.3;8.3.3 Kinetic Renormalization of PLDE;254
13.4.4;8.3.4 PLDE in Flat Metal Films in Kretschmann Geometry;256
13.4.5;8.3.5 PLDE in Metal Films of Modulated Profile;259
13.4.6;8.3.6 PLDE in Nanostructures;261
13.4.6.1;8.3.6.1 SPIDEr in Metal Nanowires;263
13.4.6.1.1;SPIDEr as a THz Source;264
13.4.6.1.2;SPIDEr as a Femtosecond Detector;267
13.4.6.2;8.3.6.2 “Batteries” Model Based on Nonlinearity of Metal and Asymmetric Boundary Conditions;268
13.5;8.4 Conclusions;270
13.6;References;270
14;9 Dimensional Variations in Nanohybrids: Property Alterations, Applications, and Considerations for Toxicological Implications;276
14.1;Abstract;276
14.2;9.1 Introduction;277
14.3;9.2 Dimensional Variations in Nanohybrids: Altered Properties and Applications;278
14.4;9.3 Nano-Bio Interactions of Nanohybrids: Importance of Dimensionality;285
14.5;9.4 Environmental and Toxicological Significance;290
14.6;9.5 Conclusions;290
14.7;Acknowledgements;291
14.8;References;291
15;10 Assemblies and Superstructures of Inorganic Colloidal Nanocrystals;297
15.1;Abstract;297
15.2;10.1 Introduction;297
15.3;10.2 Forces at Nanoscale;299
15.3.1;10.2.1 Van der Waals Interactions;300
15.3.1.1;10.2.1.1 Examples of Nanoparticle Self-assemblies;301
15.3.2;10.2.2 Induced Self-assembly;301
15.3.3;10.2.3 Electrostatic Interactions;303
15.3.3.1;10.2.3.1 Examples of Self-assembly of Nanoparticles;303
15.3.4;10.2.4 Magnetic Interactions;304
15.3.5;10.2.5 Superficial Forces;307
15.4;10.3 The Functionality of Nanoparticle Superstructures;307
15.4.1;10.3.1 Mechanical Strength;308
15.4.2;10.3.2 Photoluminescence;309
15.4.3;10.3.3 Catalysis;309
15.4.4;10.3.4 Plasmonics;311
15.4.5;10.3.5 Surface Enhanced Raman Spectroscopy (SERS);312
15.5;10.4 Superlattice Formation;313
15.5.1;10.4.1 Nanocubes;314
15.5.2;10.4.2 Nano-octahedra;314
15.5.3;10.4.3 Nanoplates and Nanostars;314
15.5.4;10.4.4 Nanorods;315
15.6;10.5 Methods Used for the Directed Assembly of Nanoparticles;316
15.6.1;10.5.1 The Langmuir-Blodgett (LB) Method;316
15.6.2;10.5.2 Ligand Stabilization;320
15.6.3;10.5.3 The Solvent Evaporation Technique;322
15.6.4;10.5.4 The DNA-Template Method;325
15.6.5;10.5.5 Template Assembly;327
15.6.6;10.5.6 The Sedimentation Method;327
15.6.7;10.5.7 Pressure Induced Growth;328
15.6.8;10.5.8 Light-Induced Assembly;329
15.7;10.6 Conclusions and Perspectives;330
15.8;Bibliography;331
16;11 Nanostructured Catalysts for the Electrochemical Reduction of CO2;340
16.1;Abstract;340
16.2;11.1 Introduction;341
16.2.1;11.1.1 Background;341
16.2.2;11.1.2 Bulk Metal Catalysts for CO2 Reduction;342
16.2.3;11.1.3 Nanostructured Metal Catalysts for CO2 Reduction;345
16.3;11.2 Nanostructured Metal Catalysts for CO2 Reduction to CO;345
16.3.1;11.2.1 Nanostructured Au;346
16.3.1.1;11.2.1.1 Au Nanoparticles;346
16.3.1.2;11.2.1.2 Au Nanowires;347
16.3.2;11.2.2 Nanostructured Ag;348
16.3.2.1;11.2.2.1 Ag Nanoparticles;350
16.3.2.2;11.2.2.2 Nanoporous Ag;351
16.3.3;11.2.3 Nanostructured Zn;352
16.3.4;11.2.4 Nanostructured Pd;353
16.3.5;11.2.5 Metal Organic Frameworks;353
16.4;11.3 Nanostructured Metal Catalysts for CO2 Reduction to Hydrocarbons;354
16.4.1;11.3.1 Cu Nanoparticles;355
16.4.2;11.3.2 Cu Nanowires;356
16.4.3;11.3.3 Cu Nanofoam;358
16.5;11.4 Oxide-Derived Metallic Nanocatalysts for CO2 Reduction;359
16.5.1;11.4.1 Oxide-Derived Cu;360
16.5.2;11.4.2 Oxide-Derived Au;361
16.5.3;11.4.3 Oxide-Derived Pb;362
16.5.4;11.4.4 Oxide-Derived Ag;363
16.6;11.5 Bimetallic Nanocatalysts;364
16.7;11.6 Nano Carbon Catalysts;366
16.8;11.7 Summary and Outlook;371
16.9;References;372
17;12 Strategies for the Synthesis of Anisotropic Catalytic Nanoparticles;377
17.1;Abstract;377
17.2;12.1 Introduction;377
17.3;12.2 Synthesis of Catalytic Nanoparticles;379
17.3.1;12.2.1 Seed Mediated Growth;379
17.3.2;12.2.2 Template Mediated Growth;383
17.3.3;12.2.3 Thermal Decomposition;386
17.3.4;12.2.4 Electrochemical and Galvanic Replacement;388
17.4;12.3 Anisotropic Metal Nanoparticles Catalytic Applications;390
17.4.1;12.3.1 Catalytic Applications;390
17.4.2;12.3.2 Bimetallic Anisotropic Nanoparticles;393
17.5;12.4 Conclusion;394
17.6;References;395
18;13 Biomedical Applications of Anisotropic Gold Nanoparticles;401
18.1;Abstract;401
18.2;13.1 Introduction;402
18.3;13.2 Synthesis of Gold Nanorods;405
18.3.1;13.2.1 Synopsis;405
18.3.2;13.2.2 Historical Synthetic Approaches;405
18.3.3;13.2.3 New Approaches to Nanorod Syntheses Via a Seed-Mediated Approach;406
18.3.3.1;13.2.3.1 Secondary Growth;406
18.3.3.2;13.2.3.2 Pre-reduction with Salicylic Acid;408
18.3.3.3;13.2.3.3 Overgrowth of Gold Nanorods Via a Binary Surfactant Mixture;410
18.3.3.4;13.2.3.4 Improved Conversion of HAuCl4 into Gold Nanorods Via Re-seeding Approach;411
18.4;13.3 Functionalization of Gold Nanoparticles;412
18.4.1;13.3.1 Synopsis;412
18.4.2;13.3.2 Functionalization Using Capping Ligand;413
18.4.3;13.3.3 Functionalization Using Biomolecules;414
18.4.3.1;13.3.3.1 Oligonucleotides;414
18.4.3.2;13.3.3.2 Antibodies;415
18.4.3.3;13.3.3.3 Peptides;417
18.5;13.4 Plasmonic Photothermal Therapy;418
18.5.1;13.4.1 Synopsis;418
18.5.2;13.4.2 Optical Properties;419
18.5.2.1;13.4.2.1 Surface Plasmon Resonance SPR;419
18.5.2.2;13.4.2.2 Tunability of Optical Properties;419
18.5.3;13.4.3 Targeting;421
18.5.4;13.4.4 Examples;422
18.5.4.1;13.4.4.1 Gold Nanocages in the Photothermal Ablation of Breast Cancer;422
18.5.4.2;13.4.4.2 Gold Nanorods in the Photothermal Ablation of Squamous Cell Carcinoma;423
18.6;13.5 Conclusion;424
18.7;References;425
19;14 Application of Gold Nanorods in Cardiovascular Science;429
19.1;Abstract;429
19.2;14.1 Introduction;429
19.3;14.2 Application of Gold Nanorods as Agents to Detect Cardiovascular Disease;430
19.4;14.3 Gold Nanorods as Reporters of Material Deformation and Mechanical Environment;433
19.5;14.4 Using Gold Nanorods to Direct Cell Behavior;434
19.6;14.5 Using Gold Nanorods to Alter the Material Properties of Cardiac Valves;437
19.7;14.6 Conclusions and Future Directions;440
19.8;Acknowledgements;440
19.9;References;441
20;15 Architectured Nanomembranes;445
20.1;Abstract;445
20.2;15.1 Introduction;445
20.3;15.2 Synthesis Methodologies;447
20.4;15.3 Experimental;449
20.4.1;15.3.1 Production of Titania Nanotube Membranes;449
20.4.2;15.3.2 Production of Nanoporous Glass Membranes;450
20.5;15.4 Results and Discussion;451
20.6;15.5 Conclusion;462
20.7;Acknowledgements;463
20.8;References;463
21;Summary and Final Thoughts;468
22;Index;470



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.