Hybrid Advanced Techniques for Forecasting in Energy Sector | Buch | 978-3-03897-290-7 | sack.de

Buch, Englisch, 250 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 646 g

Hybrid Advanced Techniques for Forecasting in Energy Sector


1. Auflage 2018
ISBN: 978-3-03897-290-7
Verlag: MDPI AG

Buch, Englisch, 250 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 646 g

ISBN: 978-3-03897-290-7
Verlag: MDPI AG


Accurate forecasting performance in the energy sector is a primary factor in the modern restructured power market, accomplished by any novel advanced hybrid techniques. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated by factors such as seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. To comprehensively address this issue, it is insufficient to concentrate only on simply hybridizing evolutionary algorithms with each other, or on hybridizing evolutionary algorithms with chaotic mapping, quantum computing, recurrent and seasonal mechanisms, and fuzzy inference theory in order to determine suitable parameters for an existing model. It is necessary to also consider hybridizing or combining two or more existing models (e.g., neuro-fuzzy model, BPNN-fuzzy model, seasonal support vector regression–chaotic quantum particle swarm optimization (SSVR-CQPSO), etc.). These advanced novel hybrid techniques can provide more satisfactory energy forecasting performances.
This book aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards recent developments, i.e., hybridizing or combining any advanced techniques in energy forecasting, with the superior capabilities over the traditional forecasting approaches, with the ability to overcome some embedded drawbacks, and with the very superiority to achieve significant improved forecasting accuracy.

Hybrid Advanced Techniques for Forecasting in Energy Sector jetzt bestellen!

Zielgruppe


Professionals/Scholars

Weitere Infos & Material


Hong, Wei-Chiang
School of Computer Science and Technology, Jiangsu Normal University, China



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.