Buch, Englisch, Band 132, 226 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g
Buch, Englisch, Band 132, 226 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g
Reihe: Applied Mathematical Sciences
ISBN: 978-0-387-98319-6
Verlag: Springer
A cognitive journey towards the reliable simulation of scattering problems using finite element methods, with the pre-asymptotic analysis of Galerkin FEM for the Helmholtz equation with moderate and large wave number forming the core of this book. Starting from the basic physical assumptions, the author methodically develops both the strong and weak forms of the governing equations, while the main chapter on finite element analysis is preceded by a systematic treatment of Galerkin methods for indefinite sesquilinear forms. In the final chapter, three dimensional computational simulations are presented and compared with experimental data. The author also includes broad reference material on numerical methods for the Helmholtz equation in unbounded domains, including Dirichlet-to-Neumann methods, absorbing boundary conditions, infinite elements and the perfectly matched layer. A self-contained and easily readable work.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
Weitere Infos & Material
The Governing Equations of Time-Harmonic Wave Propagation.- Analytical and Variational Solutions of Helmholtz Problems.- Discretization Methods for Exterior Helmholtz Problems.- Finite Element Error Analysis and Control for Helmholtz Problems.- Computational Simulation of Elastic Scattering.