Imai | Applied Hyperfunction Theory | Buch | 978-0-7923-1507-0 | sack.de

Buch, Englisch, Band 8, 438 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 857 g

Reihe: Mathematics and its Applications

Imai

Applied Hyperfunction Theory


1992
ISBN: 978-0-7923-1507-0
Verlag: Springer Netherlands

Buch, Englisch, Band 8, 438 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 857 g

Reihe: Mathematics and its Applications

ISBN: 978-0-7923-1507-0
Verlag: Springer Netherlands


Generalized functions are now widely recognized as important mathematical tools for engineers and physicists. But they are considered to be inaccessible for non-specialists. To remedy this situation, this book gives an intelligible exposition of generalized functions based on Sato's hyperfunction, which is essentially the `boundary value of analytic functions'. An intuitive image -- hyperfunction = vortex layer -- is adopted, and only an elementary knowledge of complex function theory is assumed. The treatment is entirely self-contained.
The first part of the book gives a detailed account of fundamental operations such as the four arithmetical operations applicable to hyperfunctions, namely differentiation, integration, and convolution, as well as Fourier transform. Fourier series are seen to be nothing but periodic hyperfunctions. In the second part, based on the general theory, the Hilbert transform and Poisson-Schwarz integral formula are treated and their application to integral equations is studied. A great number of formulas obtained in the course of treatment are summarized as tables in the appendix. In particular, those concerning convolution, the Hilbert transform and Fourier transform contain much new material.
For mathematicians, mathematical physicists and engineers whose work involves generalized functions.
Imai Applied Hyperfunction Theory jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 2. Operations on Hyperfunctions.- 3. Basic Hyperfunctions.- 4. Hyperfunctions Depending On Parameters.- 5. Fourier Transformation.- 6. Fourier Transformation Of Power-Type Hyperfunctions.- 7. Upper (Lower)-Type Hyperfunctions.- 8. Fourier Transforms-Existence And Regularity.- 9. Fourier Transform-Asymptotic Behaviour.- 10. Periodic Hyperfunctions And Fourier Series Fourier Series.- 11. Analytic Continuation And Projection Of Hyperfunctions.- 12. Product Of Hyperfunctions.- 13. Convolution Of Hyperfunctions.- 14. Convolution Of Periodic Hyperfunctions.- 15. Hilbert Transforms And Conjugate Hyperfunctions.- 16. Poisson-Schwarz Integral Formulae.- 17. Integral Equations.- 18. Laplace Transforms.- Epilogue.- References.- Appendices.- Appendix A. Symbols.- Appendix B. Functions, hyperfunctions and generating functions.- Appendix C. Special functions.- Appendix D. Power-type hyperfunctions with negative integral power.- Appendix E. Upper-type and lower-type hyperfunctions.- Appendix F. Hyperfunctions and generating functions.- Appendix G. Convolutions.- Appendix H. Hilbert transforms.- Appendix I. Fourier transforms.- Appendix J. Laplace transforms.- Appendix K. Cosine transforms and sine transforms.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.