E-Book, Englisch, 1440 Seiten
Inamuddin / Thomas / Kumar Mishra Sustainable Polymer Composites and Nanocomposites
1. Auflage 2019
ISBN: 978-3-030-05399-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 1440 Seiten
Reihe: Chemistry and Material Science (R0)
ISBN: 978-3-030-05399-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents emerging economical and environmentally friendly polymer composites that are free of the side effects observed in traditional composites. It focuses on eco-friendly composite materials using granulated cork, a by-product of the cork industry; cellulose pulp from the recycling of paper residues; hemp fibers; and a range of other environmentally friendly materials procured from various sources.
The book presents the manufacturing methods, properties and characterization techniques of these eco-friendly composites. The respective chapters address classical and recent aspects of eco-friendly polymer composites and their chemistry, along with practical applications in the biomedical, pharmaceutical, automotive and other sectors. Topics addressed include the fundamentals, processing, properties, practicality, drawbacks and advantages of eco-friendly polymer composites.
Featuring contributions by experts in the field with a variety of backgrounds and specialties, the book will appeal to researchers and students in the fields of materials science and environmental science. Moreover, it fills the gap between research work in the laboratory and practical applications in related industries.Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;1 Processing, Characterization and Application of Micro and Nanocellulose Based Environmentally Friendly Polymer Composites;10
2.1;1 Introduction;10
2.2;2 Micro and Nano-cellulose;11
2.2.1;2.1 Brief Description;11
2.2.2;2.2 Obtaining Different Types of Micro and Nano-cellulose by the Mechanical, Chemical and Enzymatic Process;17
2.2.3;2.3 Functionalization or Surface Modification of Micro and Nano-cellulose;18
2.2.4;2.4 All-Based Micro and Nano-cellulose Films;24
2.3;3 Processing and Applications of Micro and Nano-cellulose Based on Biodegradable Polymers;28
2.4;4 General Applications;35
2.5;5 Conclusions;36
2.6;References;37
3;2 Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites;45
3.1;1 Introduction;45
3.2;2 Nano-Scale Structure in Cellulose Fibers;46
3.2.1;2.1 Microcrystalline Cellulose;46
3.2.2;2.2 Cellulose Microfiberils;46
3.2.3;2.3 Cellulose Nanofibrils;47
3.2.4;2.4 Cellulose Nanocrystals;47
3.2.5;2.5 Amorphous Nanocellulose;47
3.2.6;2.6 Cellulose Nanoyarm;47
3.3;3 Source of Cellulose Nanofibers;48
3.4;4 Extraction and Isolation of Cellulose Nanoparticle;48
3.5;5 Chemicals Methods;49
3.6;6 Applications of CNPs;56
3.7;7 Medicals;56
3.8;8 Drug Delivery Systems;57
3.9;9 Industrial Application;59
3.10;10 Preparation of Polymer Composites;61
3.10.1;10.1 Packaging;61
3.10.2;10.2 Emulsifiers and Solvent Thickner;62
3.11;11 Conclusion;63
3.12;References;63
4;3 Synthesis, Characterization and Applications of Polyolefin Based Eco-Friendly Polymer Composites;73
4.1;1 Introduction to Polyolefins;73
4.2;2 Non-functionalised Polyolefins;74
4.3;3 Synthesis of Polyolefins;74
4.4;4 Polypropylene;75
4.4.1;4.1 Controlled Polymerisation of Polyolefins;76
4.4.1.1;4.1.1 Future of Metallocenes or Single-Site Catalysts;76
4.5;5 Synthesis of Functionalised Polyolefins with Better Eco-Friendliness;77
4.5.1;5.1 Randomly Functionalised Copolymers;78
4.5.1.1;5.1.1 Polymer Post-functionalization;78
4.5.1.2;5.1.2 Ring-Opening Metathesis Polymerization (ROMP);79
4.5.1.3;5.1.3 Acyclic Diene Metathesis Polycondensation (ADMET);79
4.5.1.4;5.1.4 Radical Polymerization;79
4.5.1.5;5.1.5 Catalytic Routes;79
4.5.2;5.2 Chain-End Functionalized Copolymers;80
4.5.2.1;5.2.1 End-Capping of Living Polymerizations;80
4.5.2.2;5.2.2 Chain-Transfer Reactions;80
4.5.2.3;5.2.3 Functionalisation of Unsaturated Chain Ends;81
4.5.3;5.3 Segmented Copolymers: Block and Graft Copolymers;81
4.5.3.1;5.3.1 Synthesis of Block Copolymers;81
4.5.3.2;5.3.2 Synthesis of Graft Copolymers;81
4.6;6 Synthesis of Eco-Friendly Polyolefin Composites;83
4.6.1;6.1 Extrusion and Pultrusion;84
4.6.2;6.2 Injection Molding;84
4.6.3;6.3 Calendering;85
4.6.4;6.4 Compression Molding and Thermoforming;85
4.7;7 Improvement of Composite Compatibility Between Polyolefins and Natural Additives;85
4.7.1;7.1 Chemical Methods;86
4.7.2;7.2 Physical Methods;86
4.8;8 Characterization of Polyolefins and Composites;87
4.8.1;8.1 Microstructural Properties;87
4.8.1.1;8.1.1 Gel Permeation Chromatography (GPC);87
4.8.1.2;8.1.2 Differential Scanning Calorimetry (DSC);89
4.8.1.3;8.1.3 Nuclear Magnetic Resonance (NMR);89
4.8.1.4;8.1.4 Fourier Transform Infrared Spectroscopy (FTIR);90
4.8.1.5;8.1.5 Crystallization Analysis Fractionation (CRYSTAF) and Temperature Rising Elution Fractionation (TREF);91
4.8.1.6;8.1.6 Crystallization Elution Fractionation (CEF);93
4.8.1.7;8.1.7 Osmometry;93
4.8.1.8;8.1.8 Viscometry;93
4.8.1.9;8.1.9 Raman Spectroscopic Analysis;94
4.8.2;8.2 Morphological Properties;95
4.8.2.1;8.2.1 Optical Microscopy;95
4.8.2.2;8.2.2 Scanning Electron Microscopy (SEM);95
4.8.2.3;8.2.3 Atomic Force Microscopy (AFM);96
4.8.2.4;8.2.4 X-Ray Diffraction (XRD);98
4.8.2.5;8.2.5 Transmission Electron Microscopy (TEM);99
4.8.3;8.3 Mechanical Properties;100
4.8.3.1;8.3.1 Three-Point Flexural Test;100
4.8.3.2;8.3.2 Tensile Test;101
4.8.3.3;8.3.3 Dynamic Mechanical Analysis;101
4.9;9 Degradation of Polyolefins and Composites;101
4.9.1;9.1 Ageing and Corrosion;101
4.9.2;9.2 Chemical Degradation;102
4.9.3;9.3 Biodegradation;102
4.10;10 Applications of Polyolefins and Eco-Friendly Composites;102
4.11;11 Conclusion;104
4.12;References;104
5;4 Spectroscopy and Microscopy of Eco-friendly Polymer Composites;112
5.1;1 Introduction;113
5.2;2 Isolation of Eco-friendly Polymers;114
5.2.1;2.1 Eco-friendly Polymers of Plant Origin;115
5.2.1.1;2.1.1 Cellulose Extraction;115
5.2.1.2;2.1.2 Hemicellulose Extraction;116
5.2.1.3;2.1.3 Lignin Extraction;116
5.2.1.4;2.1.4 Starch Extraction;117
5.2.1.5;2.1.5 Alginate Extraction;117
5.2.1.6;2.1.6 Zein Extraction;117
5.2.1.7;2.1.7 Soy Extraction;118
5.2.2;2.2 Animal-Based Eco-friendly Polymers;118
5.2.2.1;2.2.1 Collagen Extraction;118
5.2.2.2;2.2.2 Gelatin Extraction;118
5.2.2.3;2.2.3 Chitin Extraction;119
5.2.2.4;2.2.4 Casein Extraction;119
5.2.2.5;2.2.5 Hyaluronan (HA) Extraction;119
5.2.3;2.3 Bacterial-Based Eco-friendly Polymers;120
5.2.3.1;2.3.1 Bacterial Cellulose Extraction;120
5.2.3.2;2.3.2 Pullulan Extraction;120
5.2.4;2.4 Synthetic Eco-friendly Polymers;120
5.2.4.1;2.4.1 PLA Synthesis;120
5.2.4.2;2.4.2 PLGA Synthesis;121
5.2.4.3;2.4.3 Polyesters Synthesis;121
5.3;3 Spectroscopic and Microscopic Characterization of Biopolymers and Their NCs;121
5.3.1;3.1 Polysaccharide-Based Biopolymers;121
5.3.1.1;3.1.1 CHNS Analysis;122
5.3.1.2;3.1.2 FT-IR Spectroscopy;122
5.3.1.3;3.1.3 Powder XRD;124
5.3.1.4;3.1.4 NMR;125
5.3.1.5;3.1.5 DLS and Zeta Potential;126
5.3.1.6;3.1.6 UV-Vis;127
5.3.1.7;3.1.7 SAXS;127
5.3.1.8;3.1.8 TGA;127
5.3.1.9;3.1.9 TGMS;128
5.3.1.10;3.1.10 DSC;128
5.3.1.11;3.1.11 ICP-MS;128
5.3.1.12;3.1.12 SEM;129
5.3.1.13;3.1.13 TEM;130
5.3.1.14;3.1.14 AFM;130
5.3.2;3.2 Polypeptide-Based Biopolymers;131
5.3.2.1;3.2.1 CHNS Analysis;131
5.3.2.2;3.2.2 FT-IR;132
5.3.2.3;3.2.3 Powder XRD;133
5.3.2.4;3.2.4 NMR;133
5.3.2.5;3.2.5 DLS and Zeta Potential;134
5.3.2.6;3.2.6 UV-Vis and Fluorescence Studies;134
5.3.2.7;3.2.7 Circular Dichroism (CD) Spectroscopy;134
5.3.2.8;3.2.8 TGA;134
5.3.2.9;3.2.9 DSC;135
5.3.2.10;3.2.10 SEM;135
5.3.2.11;3.2.11 TEM;135
5.3.2.12;3.2.12 AFM;135
5.3.3;3.3 Synthetic Based Polymers;136
5.3.3.1;3.3.1 FT-IR;136
5.3.3.2;3.3.2 Powder XRD;137
5.3.3.3;3.3.3 NMR;137
5.3.3.4;3.3.4 TGA;137
5.3.3.5;3.3.5 DSC;138
5.3.3.6;3.3.6 SEM;138
5.3.3.7;3.3.7 TEM;138
5.4;4 Future Perspectives;138
5.5;Acknowledgements;139
5.6;References;139
6;5 Biocompatible and Biodegradable Chitosan Composites in Wound Healing Application: In Situ Novel Photo-Induced Skin Regeneration Approach;149
6.1;1 Introduction;150
6.2;2 Biodegradable Polymers;152
6.3;3 Biocompatible Polymers;154
6.4;4 Wounds;155
6.4.1;4.1 Insights to the Wound Healing Process;156
6.4.1.1;4.1.1 Coagulation and Hemostasis Phase;156
6.4.1.2;4.1.2 Inflammatory Phase;157
6.4.1.3;4.1.3 Proliferation Phase;158
6.4.1.4;4.1.4 Remodelling Phase;159
6.4.2;4.2 Classical Wound Healing;159
6.5;5 Bioactive Materials and Their Progress in Treating Wounds;160
6.6;6 Chitosan;161
6.6.1;6.1 Properties of Chitosan;161
6.6.1.1;6.1.1 Solubility of Chitosan;162
6.6.1.2;6.1.2 Degree of N-Deacetylation;162
6.6.1.3;6.1.3 The Molecular Weight (MW);163
6.6.2;6.2 Chitosan Sources and Production;163
6.6.2.1;6.2.1 Demineralization (DM);164
6.6.2.2;6.2.2 Deproteinization (DP);164
6.6.2.3;6.2.3 Decoloration (DC);164
6.6.2.4;6.2.4 Deacetylation (DA);164
6.6.3;6.3 Modified Chitosan;165
6.6.3.1;6.3.1 Thiolated Chitosan;165
6.6.3.2;6.3.2 O, N-Carboxymethyl Chitosan;166
6.6.3.3;6.3.3 Highly Cationic Chitosan;166
6.6.3.4;6.3.4 PEGylated Chitosan Derivatives;166
6.7;7 Chitosan Composites and Their Inherent Biological Properties;167
6.7.1;7.1 Non-toxicity;168
6.7.2;7.2 Antimicrobial Activity;168
6.7.3;7.3 Anti-inflammatory Nature;169
6.7.4;7.4 Biocompatibility;170
6.7.5;7.5 Biodegradability;170
6.7.6;7.6 Hemostatic Properties;170
6.7.7;7.7 Mucoadhesivity;171
6.8;8 Modified Chitosan and the Biomedical Engineering of Wound Healings;172
6.8.1;8.1 Wound Healing Using Chitosan Impregnated Drug;172
6.8.1.1;8.1.1 Wound Dressing Using Sulfadiazine Loaded Chitosan Nanoparticles;172
6.8.1.2;8.1.2 Wound Dressing Using Simvastatin—Chitosan Microparticles Loaded Polyvinyl Alcohol Hydrogels;173
6.8.1.3;8.1.3 Wound Dressing Using Scaffolds of Chitosan-Fibrin (CF) Loaded with Quercetin;174
6.8.1.4;8.1.4 Wound Dressing Using Melatonin-Loaded Chitosan-Based Microspheres (Mel/CS MS);175
6.8.2;8.2 Wound Healing Due to Chitosan Composites with Metal or Metal Oxide Nanoparticles;175
6.8.3;8.3 Wound Healing Based on Hydrogels and Growth Factor Delivery;178
6.8.4;8.4 Wound Healing via Bioactive Modified Chitosan Based on Photodynamic Therapy;179
6.9;9 Study Case for the Anti-bacterial Activity of Chitosan Grafted Poly(N-Methylaniline) Nanoparticles;180
6.10;10 A Case Study in Wound Healing Due to Chitosan Grafted Poly(N-Methylaniline) Nanoparticles of Photo-Driven Skin Regeneration;181
6.11;11 Future Prospective;183
6.12;References;183
7;6 Mechanical, Thermal and Viscoelastic Properties of Polymer Composites Reinforced with Various Nanomaterials;190
7.1;1 Introduction;190
7.2;2 Mechanical Properties of Nanocomposites;191
7.2.1;2.1 Mechanical Properties of Polymer Reinforced with Cellulose-Based Nanofillers;191
7.2.2;2.2 Mechanical Properties of Polymer Nanocomposites Reinforced with Carbonaceous Nanofillers;192
7.2.2.1;2.2.1 Mechanical Properties of Biopolymers Reinforced with Carbonaceous Fillers;194
7.2.3;2.3 Mechanical Properties of Polymer Reinforced with Nanoclays;196
7.2.3.1;2.3.1 Mechanical Properties of Biopolymers Reinforced with Nanoclays;200
7.3;3 Thermal Properties;201
7.3.1;3.1 Thermogravimetric Analysis (TGA);201
7.3.2;3.2 Differential Scanning Calorimetry (DSC);203
7.4;4 Dynamic Mechanical Analysis (DMA);206
7.5;5 Melt Rheology Properties;209
7.6;6 Conclusions;210
7.7;References;211
8;7 Preparation and Characterization of Antibacterial Sustainable Nanocomposites;219
8.1;1 Introduction;219
8.2;2 Synthesis of Different Nanoparticles;221
8.2.1;2.1 Different Methods Used to Synthesise Nanoparticles;222
8.2.2;2.2 Preparation and Antibacterial Mechanisms of the NPs;223
8.2.2.1;2.2.1 Silver Nanoparticles (AgNPs);223
8.2.2.2;2.2.2 Zinc Nanoparticles;227
8.2.2.3;2.2.3 Gold Nanoparticles (AuNPs);228
8.2.2.4;2.2.4 Copper Nanoparticles;229
8.2.2.5;2.2.5 Carbon-Based Nanoparticles;230
8.2.2.6;2.2.6 Clay Minerals;231
8.3;3 Preparation of Antibacterial Nanocomposites;232
8.4;4 Antibacterial Nanocomposites;233
8.4.1;4.1 Silver/Biopolymer Nanocomposites;233
8.4.2;4.2 Zinc/Biopolymer Nanocomposites;235
8.4.3;4.3 Gold/Biopolymer Nanocomposites;237
8.4.4;4.4 Copper/Biopolymer Nanocomposites;237
8.4.5;4.5 Carbon-Based/Biopolymer Nanocomposites;238
8.4.6;4.6 Clay Minerals/Biopolymer Nanocomposites;240
8.5;5 Hybrid Biopolymer Nanocomposites;241
8.6;6 Conclusion and Future Recommendations;243
8.7;References;243
9;8 Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite;249
9.1;1 Introduction;249
9.2;2 Production of Cellulose Nanofibrils;251
9.3;3 NFC Polymer Composite;252
9.4;4 Challenges of NFC Polymer Composite;253
9.5;5 Poly-lactic Acid (PLA) Based Nanocellulosic Composites;254
9.6;6 Polyhydroxyalkanoate (PHA) Based Nanocellulosic Composites;255
9.7;7 Starch-Based Nanocellulosic Composites;255
9.8;8 NFC Polymer Composite in Thermoplastics Materials;256
9.9;9 NFC Polymer Composite in Automotive;257
9.10;10 Conclusions;257
9.11;Acknowledgements;258
9.12;References;258
10;9 Static and Dynamic Mechanical Properties of Eco-friendly Polymer Composites;262
10.1;1 Introduction;262
10.2;2 Constituent Materials: Polymer Matrixes and Natural Fibres;263
10.2.1;2.1 Static Mechanical Properties;264
10.2.2;2.2 Dynamic Mechanical Properties;270
10.3;3 Fibre/Matrix Adhesion;271
10.4;4 Static Mechanical Properties;274
10.4.1;4.1 Random Short Fibres Biocomposites;275
10.4.2;4.2 MAT Biocomposites;282
10.4.3;4.3 Long Fibre Biocomposites;282
10.5;5 Dynamic Mechanical Properties;287
10.6;6 Conclusions;291
10.7;References;292
11;10 Synthesis, Characterization, and Applications of Hemicellulose Based Eco-friendly Polymer Composites;296
11.1;1 Introduction;296
11.2;2 Definitions About Hemicellulose and Derivatives;298
11.2.1;2.1 Properties;300
11.3;3 Hemicellulose Based Composites and Their Applications;301
11.3.1;3.1 Composite Formation and Characterization with Layered Silicates;303
11.3.2;3.2 Packaging Materials;304
11.3.3;3.3 Other Applications;305
11.3.4;3.4 Basic Components of Composite Materials;306
11.3.5;3.5 The Effect of Fibers on Composite Materials;307
11.4;4 Conclusions;307
11.5;References;308
12;11 Impact of Nanoparticle Shape, Size, and Properties of the Sustainable Nanocomposites;315
12.1;1 Introduction;315
12.2;2 Composites;316
12.2.1;2.1 Nanocomposites;317
12.2.2;2.2 Sustainable Polymeric Nanocomposites;317
12.3;3 Preparation Methods;318
12.3.1;3.1 Electrospinning;318
12.3.2;3.2 One Step in-Situ Polymerization Method;319
12.3.3;3.3 Thermal Spray Synthesis;319
12.3.4;3.4 Sol-Gel Method;319
12.4;4 Biophysical Properties;320
12.4.1;4.1 Structure;320
12.4.2;4.2 Shape;321
12.4.3;4.3 Size;321
12.4.4;4.4 Surface Area/Morphology;322
12.4.5;4.5 Applications;322
12.4.6;4.6 Biological Applications;323
12.4.7;4.7 Drug Delivery/Gene Delivery;323
12.4.8;4.8 Wound Healing;325
12.4.9;4.9 Tissue Engineering;325
12.4.10;4.10 Water Treatment;327
12.4.11;4.11 Agriculture;329
12.5;5 Conclusion;330
12.6;References;330
13;12 Polymeric Composites as Catalysts for Fine Chemistry;339
13.1;1 Introduction;339
13.2;2 Electrocatalytic Activity of Polymer Composite;340
13.2.1;2.1 Composite Polymer-Carbon Black Supports;342
13.2.2;2.2 Composite Polymer-CNT Supports;343
13.2.3;2.3 Composite Polymer-Ceramic Supports;344
13.3;3 Catalysing Cross-Coupling Reactions;345
13.3.1;3.1 Suzuki-Miyaura Reactions;346
13.3.2;3.2 Heck Cross-Coupling Reactions;347
13.3.3;3.3 Sonogashira-Hagihara Reaction;348
13.4;4 Photocatalytic Degradation of the Pollutant;348
13.5;5 Catalytic Reduction of 4-Nitrophenol;349
13.6;6 Conclusions;352
13.7;References;353
14;13 Fabrication Methods of Sustainable Hydrogels;357
14.1;1 Introduction;358
14.2;2 Classifying Hydrogel: What’s the Bottom Line?;360
14.3;3 Methodology for Making Hydrogels and Sustainable Hydrogels;363
14.3.1;3.1 Goals and Technical Features;363
14.3.2;3.2 Technologies Developed for Their Preparation;364
14.3.3;3.3 Preparation and Optimization: Few Examples;368
14.4;4 Innovative Sustainable Hydrogels: What’s New?;370
14.4.1;4.1 Utilization of Current and Classical Hydrogel Products;370
14.4.2;4.2 An Innovative Strategy for Making Hydrogel Products;372
14.4.3;4.3 Focus on the Nano to Micro ECM Gel Coating System;379
14.4.3.1;4.3.1 Live-Staining of Secreted Elastin by Smooth Muscle Cells in All Tissues;379
14.4.3.2;4.3.2 Adipose Tissue Regeneration Inducing and Maintaining the Functionality of Both Pre and Mature Adipocytes in Long-Term Cultures;380
14.5;5 Conclusions;380
14.6;Acknowledgements;381
14.7;References;381
15;14 Application of Sustainable Nanocomposites for Water Purification Process;389
15.1;1 Introduction;389
15.2;2 Conventional Water Purifications Technologies;391
15.3;3 Types of Nanocomposites and Its Application in Water Purification;392
15.3.1;3.1 Metal Nanocomposite;392
15.3.2;3.2 Metal Oxide Nanocomposite;394
15.3.3;3.3 Carbon Nanocomposite;397
15.3.4;3.4 Polymer Nanocomposite;398
15.3.5;3.5 Membranes Nanocomposite;401
15.3.5.1;3.5.1 Conventional Nanocomposite Membranes;403
15.3.5.2;3.5.2 Thin-Film Nanocomposites;405
15.3.5.3;3.5.3 TFC with Nanocomposite Substrate;406
15.4;4 Future Outlooks;408
15.5;5 Conclusion;408
15.6;References;409
16;15 Sustainable Nanocomposites in Food Packaging;415
16.1;1 Introduction;416
16.1.1;1.1 Nanocomposites;416
16.2;2 Nanocomposite Preparation;418
16.2.1;2.1 Polymer Solution Casting;419
16.2.2;2.2 Polymerization;421
16.2.3;2.3 Melt Mixing;426
16.3;3 Characterization of Nanocomposites;427
16.3.1;3.1 Mechanical Property;427
16.3.2;3.2 Thermal Property;428
16.3.3;3.3 Degradation Behaviour;428
16.3.4;3.4 Migration Testing;429
16.3.5;3.5 Antimicrobial Testing;430
16.3.6;3.6 Optical Behaviour;432
16.3.7;3.7 Permeability and Barrier Properties;433
16.4;Acknowledgements;434
16.5;References;434
17;16 Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices;439
17.1;1 Introduction;439
17.2;2 Liquid Feeding;441
17.3;3 Masterbatch Approach;442
17.3.1;3.1 Solvent Casting;442
17.3.1.1;3.1.1 Formation of Aggregates in Masterbatch Films;443
17.3.2;3.2 Spin-Coating;444
17.3.2.1;3.2.1 Formation of Aggregates in Masterbatch Films;446
17.3.3;3.3 Variation of Aggregates in Masterbatch Along the Cross-Sectional Thickness;446
17.4;4 Conclusion;448
17.5;Acknowledgements;448
17.6;References;448
18;17 Processing and Industrial Applications of Sustainable Nanocomposites Containing Nanofillers;452
18.1;1 Introduction;453
18.2;2 Fabrication Techniques of Nanocomposites;457
18.2.1;2.1 Intercalation Method;457
18.2.2;2.2 Sol-Gel Method;459
18.2.3;2.3 Direct Dispersion Method;460
18.3;3 Applications of Sustainable Nanocomposites;462
18.3.1;3.1 Electronic Applications;464
18.3.2;3.2 Shape Memory and Biomedical Applications;465
18.3.3;3.3 Mechanical Applications;467
18.4;4 Conclusions;470
18.5;References;470
19;18 Recent Advances in Paper-Based Analytical Devices: A Pivotal Step Forward in Building Next-Generation Sensor Technology;480
19.1;1 Introduction;482
19.2;2 Sensing in the Physical World;483
19.3;3 Sensing in Biomedical Health Care and Clinical Diagnostics;489
19.3.1;3.1 Colorimetric Sensing;489
19.3.2;3.2 Electrochemical Sensing;491
19.3.3;3.3 Luminescence-Based Sensing;493
19.3.4;3.4 Other Sensor Types;494
19.4;4 Sensing for Environmental Monitoring;496
19.4.1;4.1 Colorimetric Sensing;496
19.4.2;4.2 Electrochemical Sensing;497
19.4.3;4.3 Luminescence-Based Sensing;498
19.4.4;4.4 Other Sensor Types;500
19.5;5 Sensing for Food and Water Quality;501
19.5.1;5.1 Colorimetric Sensing;501
19.5.2;5.2 Electrochemical Sensing;504
19.5.3;5.3 Luminescence-Based Sensing;504
19.5.4;5.4 Other Sensor Types;506
19.6;6 Sensing for Forensics and Security;507
19.7;7 Summary, Challenges and Future Perspectives;508
19.8;Acknowledgements;509
19.9;References;509
20;19 Polymers and Polymer Composites for Adsorptive Removal of Dyes in Water Treatment;519
20.1;1 Introduction;521
20.2;2 Modified or Functionalized Polymers and Polymer Composites;522
20.3;3 Polyaniline and Its Composites;530
20.4;4 Magnetic Polymer Composites;535
20.5;5 Polymer/Clay Composites;541
20.6;6 Polymer/by-Products or Waste Composites;543
20.7;7 Conclusions;543
20.8;Acknowledgements;544
20.9;Appendix;544
20.10;References;553
21;20 Current Scenario of Nanocomposite Materials for Fuel Cell Applications;557
21.1;1 Introduction;558
21.1.1;1.1 Working Principle of FC;558
21.1.2;1.2 Proton Conduction Mechanism in FC;560
21.2;2 Nanocomposites in FC;561
21.2.1;2.1 Nafion®- Metal Oxide-Based Nanocomposite;563
21.2.2;2.2 Graphene-Based Nanocomposites;566
21.2.3;2.3 Carbon Nanotubes and Its Hybrid Nanocomposites;570
21.2.4;2.4 Chitosan-Based Nanocomposites;574
21.2.5;2.5 Polybenzimidazole (PBI) Based Nanocomposite Membranes;578
21.2.6;2.6 Poly (ether ether ketone) Based Nanocomposite;581
21.2.7;2.7 Polyvinyl Alcohol (PVA) Based Nanocomposites;584
21.3;3 Conclusion;587
21.4;Acknowledgements;587
21.5;References;588
22;21 Rubber Clay Nanocomposites;593
22.1;1 Introduction;594
22.2;2 Reinforcement Particles;595
22.2.1;2.1 Carbon Black;595
22.2.2;2.2 Silica;596
22.2.3;2.3 Clay;596
22.3;3 Layered Silicates;597
22.3.1;3.1 Structure and Physical Characteristics;597
22.3.2;3.2 Classification of Clays;599
22.4;4 Chemical Modification of Clays;600
22.4.1;4.1 Synthesis of Organoclays;601
22.5;5 Characterization of Clay Nanoparticles;602
22.5.1;5.1 X-Ray Diffraction (XRD);603
22.5.2;5.2 Microscopy;603
22.5.3;5.3 Fourier Transform Infrared Spectroscopy;605
22.5.4;5.4 Thermal Properties;605
22.6;6 Elastomeric Clay Composites;606
22.6.1;6.1 Natural Rubber;606
22.6.2;6.2 Styrene Butadiene Rubber;608
22.6.3;6.3 Nitrile-Butadiene Rubber;609
22.6.4;6.4 Ethylene-Propylene-Diene Rubbers;610
22.6.5;6.5 Role of Nanofiller as Compatibilizer in Rubber Blends;611
22.7;7 Preparation of Nanocomposites;612
22.7.1;7.1 Melt Mixing;613
22.7.2;7.2 Solution Blending;614
22.7.3;7.3 Latex Blending/Latex Compounding;615
22.7.4;7.4 Sol-Gel Processing;616
22.7.5;7.5 Emulsion Polymerization;616
22.8;8 Rubber/Clay Nanocomposites Properties;617
22.8.1;8.1 Vulcanization Variables;617
22.8.2;8.2 Rheological Properties;620
22.8.3;8.3 Mechanical Properties;620
22.8.4;8.4 Barrier Properties;621
22.9;9 Applications;622
22.10;10 Final Remarks;623
22.11;Acknowledgements;624
22.12;References;624
23;22 Organic/Silica Nanocomposite Membranes Applicable to Green Chemistry;629
23.1;1 Introduction;629
23.1.1;1.1 Challenges in Synthesizing Organic/Si Nanocomposite Membranes;631
23.1.2;1.2 Possible Methods to Overcome the Challenges;632
23.1.3;1.3 Ex Situ Technique;633
23.1.4;1.4 In Situ Technique;633
23.2;2 Si Preparation;634
23.3;3 Surface Modification of Si;636
23.3.1;3.1 Chemical Modification;636
23.3.2;3.2 Modification by Physical Interaction;638
23.3.3;3.3 Blending;638
23.3.3.1;3.3.1 Melt Blending;638
23.3.3.2;3.3.2 Solution Blending;639
23.3.3.3;3.3.3 Cryomilling Methods;640
23.3.3.4;3.3.4 Thermal Spraying;640
23.4;4 Physical Properties of the Organic/Si Nanocomposite Membranes;642
23.4.1;4.1 Thermal Properties;642
23.4.2;4.2 Mechanical Properties;643
23.4.3;4.3 Proton Conductivity;644
23.4.4;4.4 Water Uptake;644
23.4.5;4.5 Cell Performance Investigation;646
23.5;5 Summary and Future Direction;646
23.6;References;648
24;23 Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites;653
24.1;1 Introduction;654
24.2;2 Overview of Cellulose Nanofibers;656
24.2.1;2.1 Cellulose: Structure and Chemistry;657
24.2.2;2.2 Cellulose Nanofibers;659
24.2.2.1;2.2.1 Types of Cellulose Nanofibers;659
24.2.2.2;2.2.2 Feedstock;660
24.2.2.3;2.2.3 Preparation of Cellulose Nanofibres;662
24.2.2.3.1;Preparation of Cellulose Nanocrystals;664
24.2.2.3.2;Preparation of Cellulose Nanofibrils;665
24.2.2.3.3;Preparation of Other Families of Cellulose Nanofibers Materials;666
24.3;3 Cellulose Modification;667
24.3.1;3.1 Acid Hydrolysis;667
24.3.2;3.2 Enzyme Hydrolysis;669
24.3.3;3.3 Ionic Liquid;669
24.3.4;3.4 Mechanical Treatment;670
24.3.5;3.5 Subcritical Water;671
24.3.6;3.6 2,2,6,6-Tetramethyl-1-Piperidinyloxy;671
24.3.7;3.7 Combined Method;671
24.4;4 Characterization of Cellulose Nanofibers;671
24.4.1;4.1 Fourier Transform Infrared;671
24.4.2;4.2 X-ray Diffraction Analysis;673
24.4.3;4.3 Scanning Electron Microscope;675
24.4.4;4.4 Transmission Electron Microscope;675
24.4.5;4.5 Atomic Force Microscopy;676
24.4.6;4.6 Thermal Behaviour;677
24.5;5 The Recent Development of Cellulose Nanofibre as Filler in Polymer Composite;679
24.6;6 Concluding Remarks;683
24.7;Acknowledgements;683
24.8;References;683
25;24 Recyclable and Eco-friendly Single Polymer Composite;692
25.1;1 Introduction;692
25.2;2 Recyclable Single Polymer Composite;694
25.2.1;2.1 Basic Polymer Chemistry;694
25.2.2;2.2 Structural Modification;696
25.2.3;2.3 Production of Polymeric Fibers;702
25.2.4;2.4 Fabrication of the Polymeric Fibres with the Matrix;703
25.3;3 Eco-friendly Single Polymer Composites;706
25.3.1;3.1 PLA-Based;707
25.3.1.1;3.1.1 PLA Synthesis;707
25.3.1.2;3.1.2 PLA SPCs;712
25.3.2;3.2 PVA-Based;715
25.4;4 Conclusion and Future Outlook;717
25.5;References;718
26;25 Processing Aspects and Biomedical and Environmental Applications of Sustainable Nanocomposites Containing Nanofillers;725
26.1;1 Introduction;725
26.2;2 Characteristics and Fabrication of Nano-fillers;727
26.3;3 Green Nanocomposites;731
26.3.1;3.1 Cellulose Nanocomposites;731
26.3.2;3.2 Chitosan Nanocomposites;733
26.3.3;3.3 Magnetic Nanocomposites;734
26.4;4 Applications;736
26.4.1;4.1 Nano-drug Delivery;736
26.4.2;4.2 Tissue Engineering;738
26.4.3;4.3 Biosensor, Electrical Conductive Polymer and Insulator;741
26.4.4;4.4 Catalysis and Environmental Remediation;742
26.5;5 Conclusion and Future Outlook;746
26.6;References;746
27;26 Smart Materials, Magnetic Graphene Oxide-Based Nanocomposites for Sustainable Water Purification;756
27.1;1 Introduction;756
27.2;2 Properties of Graphene;760
27.2.1;2.1 Electrical and Electronic Properties;760
27.2.2;2.2 Magnetic Properties;761
27.2.3;2.3 Chemical Properties;762
27.2.4;2.4 Mechanical Properties;762
27.2.5;2.5 Thermal Properties;763
27.3;3 Preparation Methods of MGO Nanocomposites;763
27.4;4 Structural Characterization and Properties of MGOs;764
27.5;5 Applications to Sustainable Water Purification;766
27.5.1;5.1 Heavy Metals Removal;767
27.5.2;5.2 Organic Pollutants Removal;771
27.6;6 Conclusion and Future Perspective;772
27.7;Acknowledgments;773
27.8;References;773
28;27 Functionalized Carbon Nanomaterial for Artificial Bone Replacement as Filler Material;779
28.1;1 Introduction;779
28.2;2 Bone Structure and Mechanics;782
28.3;3 History of Artificial Organ;783
28.3.1;3.1 Artificial Bone Materials;785
28.4;4 Carbon Nanomaterials;786
28.5;5 Carbon Nanotubes;786
28.5.1;5.1 Structure and Properties of Carbon Nanotubes;787
28.5.1.1;5.1.1 Single-Walled Carbon Nanotubes (SWNTs);787
28.5.1.2;5.1.2 Multi-walled Carbon Nanotubes (MWNTs);788
28.5.2;5.2 Synthesis of Carbon Nanotubes;789
28.6;6 Functionalization of Carbon Nanomaterials;789
28.6.1;6.1 Covalent Approach for CNTs;791
28.6.1.1;6.1.1 Oxidation Treatment;791
28.6.1.2;6.1.2 Cycloaddition Reaction;793
28.6.1.3;6.1.3 Radical-Additions;793
28.6.2;6.2 Non-covalent Approach for CNTs;795
28.7;7 Conclusion and Perspectives;796
28.8;References;796
29;28 Inorganic Nanocomposite Hydrogels: Present Knowledge and Future Challenge;801
29.1;1 Introduction;802
29.1.1;1.1 Classification of Hydrogels;803
29.1.2;1.2 Feature Characteristics of Hydrogels;804
29.2;2 Nanocomposite Hydrogels;806
29.2.1;2.1 Nanoparticles Preparation;806
29.2.2;2.2 Nanocomposite Hydrogel Preparation Methods;808
29.2.2.1;2.2.1 Formation of a Hydrogel in a Nanoparticle Suspension;809
29.2.2.2;2.2.2 Physical Introduction of Nanoparticles into the Prepared Gels;809
29.2.2.3;2.2.3 In Situ Formation of Reactive Nanoparticles;809
29.2.2.4;2.2.4 Nanoparticles as the Multifunctional Crosslinking Agents;810
29.2.2.5;2.2.5 Nanoparticles and Conductive Additives Along with Polymeric Binders;811
29.2.3;2.3 How Nanoparticles Improve Mechanical Strength of Hydrogels?;812
29.2.4;2.4 Characterization Methods of Nanocomposites Hydrogels;813
29.2.5;2.5 Types of Nanocomposite Hydrogels and Their Applications;814
29.2.5.1;2.5.1 Inorganic Ceramics and Non-metal Nanoparticles;814
29.2.5.2;2.5.2 Silicon-Based Nanoparticles;824
29.2.5.3;2.5.3 Carbon-Based Nanoparticles;824
29.2.5.4;2.5.4 Metal and Metal Oxide Nanoparticles;831
29.3;3 Summary and Outlooks;840
29.4;References;841
30;29 Processing, Characterization and Application of Natural Rubber Based Environmentally Friendly Polymer Composites;850
30.1;1 Introduction;851
30.2;2 NR Composites Filled with Plant Fibers;857
30.3;3 Coir/Coconut Fiber (CF);859
30.4;4 Oil Palm Fiber (OPF);859
30.5;5 Sisal Fiber (SF);859
30.6;6 Bamboo Fiber (BF);859
30.7;7 Isora Fiber (IF);860
30.8;8 Pineapple Leaf Fiber (PLF);860
30.9;9 Processing;860
30.10;10 Characterization;861
30.10.1;10.1 Mechanical Properties;861
30.10.2;10.2 Dynamic Mechanical Properties;862
30.11;11 Application;866
30.12;12 NC Reinforced NR NCPs;866
30.13;13 Processing;867
30.14;14 Characterization;869
30.14.1;14.1 Biodegradability;869
30.14.2;14.2 Mechanical Properties;869
30.14.3;14.3 Dynamic Mechanical Properties;877
30.15;15 Application;878
30.15.1;15.1 Packaging;878
30.16;16 NR Composites Based on Recycled Rubber Granulate (RRG);879
30.17;17 Processing;879
30.18;18 Characterization;880
30.18.1;18.1 Mechanical Properties;880
30.19;19 Application;884
30.20;20 NR Composites Containing Proteins;884
30.21;21 Processing;884
30.22;22 Characterization;888
30.22.1;22.1 Mechanical Properties;888
30.22.2;22.2 Dynamic Mechanical Properties;889
30.22.3;22.3 Biodegradability;890
30.23;23 Application;890
30.24;24 Conclusions;890
30.25;Acknowledgements;891
30.26;References;891
31;30 Electrical Properties of Sustainable Nano-Composites Containing Nano-Fillers: Dielectric Properties and Electrical Conductivity;893
31.1;1 Introduction;893
31.2;2 Nanocomposites with Nanofillers;894
31.3;3 Dielectric Properties of Nanocomposites;896
31.3.1;3.1 Dielectric Constant;897
31.3.2;3.2 Dielectric Loss Factor;898
31.3.3;3.3 Tangent Loss;900
31.3.4;3.4 Static Permittivity;901
31.3.5;3.5 Relaxation Time;902
31.4;4 The Electrical Conductivity of Nanocomposite;903
31.4.1;4.1 Characteristics of Electrically Respond Polymer Nanocomposites;904
31.4.2;4.2 Parameters Influencing Electrical Conductivity of Nanocomposites;905
31.5;5 Conclusion;905
31.6;References;905
32;31 Thermal Properties of Sustainable Thermoplastics Nanocomposites Containing Nanofillers and Its Recycling Perspective;909
32.1;1 Introduction;909
32.2;2 Sustainable Thermoplastic Nanocomposite;910
32.3;3 Thermal Properties of Sustainable Nanocomposites Based on Types of Sustainable Polymers;911
32.3.1;3.1 Polylactic Acid (PLA) Based Nanocomposites;911
32.3.2;3.2 Thermoplastic Starch (TPS);913
32.3.3;3.3 Polycaprolactone (PCL);915
32.3.4;3.4 Polyamide/Clay Nanocomposites;915
32.3.5;3.5 Polypropylene/Layered Silicates Nanocomposites;916
32.4;4 Thermal Properties of Sustainable Nanocomposites Based on Various Thermal Properties;917
32.4.1;4.1 Thermogravimetric/Differential Thermogravimetric Analysis (TGA/DTG);917
32.4.2;4.2 Differential Scanning Calorimetry (DSC);918
32.4.3;4.3 Thermal Conductivity;920
32.5;5 Recycling Perspective;921
32.6;6 Conclusion;924
32.7;References;924
33;32 Application of Sustainable Nanocomposites in Membrane Technology;928
33.1;1 Introduction;928
33.2;2 Types of Nanoparticles;930
33.2.1;2.1 Inorganic Metal Oxide and Hydroxide;930
33.2.2;2.2 Inorganic Nanoparticles to Prepare Polymeric Nanocomposite Membranes;932
33.3;3 Thin-Film Nanocomposite (TFN);933
33.3.1;3.1 Thin-Film Nanocomposite (TFN) Membranes for Water Desalination;933
33.3.2;3.2 Thin-Film Nanocomposite (TFN) Membranes for Wastewater Treatment;935
33.3.3;3.3 Thin-Film Nanocomposite (TFN) Membranes for Gas Separation;935
33.3.4;3.4 Thin-Film Nanocomposite (TFN) Membranes for Fuel Cell Applications;938
33.3.5;3.5 Thin-Film Nanocomposite (TFN) Membranes for Flue Gas Dehydration;942
33.4;4 Conclusions;948
33.5;References;948
34;33 Reliable Natural-Fibre Augmented Biodegraded Polymer Composites;954
34.1;1 Introduction;954
34.2;2 Classification of Fibres;956
34.2.1;2.1 Drawbacks of Natural Fibres;956
34.2.2;2.2 Advantages of Natural Fibres;957
34.2.3;2.3 Strategies for Surface Modification in Natural Fibres;957
34.2.3.1;2.3.1 Chemical Techniques;958
34.2.3.2;2.3.2 Physical Techniques;960
34.3;3 Types of Biodegradable Polymer Composites (BPC’S);961
34.3.1;3.1 Coir Fibre Reinforced Composite;962
34.3.2;3.2 Cellulose Fibre Reinforced Composite;963
34.3.3;3.3 Jute Fibre Reinforced Composite;963
34.3.4;3.4 Poly Lactide (PLA) Fibre Reinforced Composite;963
34.3.5;3.5 Polyhydroxyalkanoates Fibre Reinforced Composite;965
34.3.6;3.6 Thermoplastic Starch (TPS);965
34.4;4 Conclusions;965
34.5;References;966
35;34 An Overview on Plant Fiber Technology: An Interdisciplinary Approach;969
35.1;1 Introduction;970
35.2;2 Biology of Plant Fibers;970
35.2.1;2.1 Fiber Quality;974
35.3;3 Fiber Chemistry;975
35.4;4 Engineering Aspects of Non-wood Fibers in Composite Applications;983
35.5;5 Conclusion;987
35.6;Acknowledgements;987
35.7;References;988
36;35 Nanocellulose-Reinforced Adhesives for Wood-Based Panels;992
36.1;1 Introduction;992
36.2;2 Wood-Based Panels;993
36.3;3 Adhesives and Adhesion;995
36.3.1;3.1 Adhesives;995
36.3.2;3.2 Adhesion;1000
36.3.2.1;3.2.1 Factors Influencing the Adhesion Process;1001
36.3.2.1.1;Physico-Chemical Characteristics of the Adhesive;1001
36.3.2.1.2;Intrinsic Characteristics of Wood;1002
36.3.3;3.3 Adhesive Additives;1004
36.4;4 Nanocellulose;1005
36.5;5 Nanocellulose-Reinforced Adhesives Performance and Properties;1007
36.5.1;5.1 Effects of the Addition of Nanocellulose on Adhesives;1007
36.5.2;5.2 Wood Composites with Nanocellulose-Reinforced Adhesives;1008
36.6;6 Final Considerations;1010
36.7;Acknowledgements;1011
36.8;References;1011
37;36 Nanocellulose in the Paper Making;1017
37.1;1 Introduction;1017
37.2;2 Wood for Pulp and Paper Production;1019
37.3;3 Paper Making;1021
37.3.1;3.1 Pulping;1021
37.3.2;3.2 Bleaching;1022
37.3.3;3.3 Drying;1024
37.3.4;3.4 Paper Production;1025
37.3.4.1;3.4.1 Preparation of the Cellulosic Pulp;1025
37.3.4.2;3.4.2 The Paper Machine;1026
37.4;4 Cellulose;1027
37.5;5 Nanocellulose;1030
37.5.1;5.1 Method of CNF and CMF Production;1032
37.5.1.1;5.1.1 Mechanical Methods;1032
37.5.1.2;5.1.2 Electrospinning;1035
37.5.2;5.2 Methods of CNC and MCC Production;1036
37.5.2.1;5.2.1 Acid Hydrolysis;1036
37.5.2.2;5.2.2 Enzymatic Hydrolysis;1038
37.6;6 Applications of Nanocellulose in Paper Making;1038
37.6.1;6.1 Nanocellulose-Reinforced Pulp;1038
37.6.2;6.2 Coating and Films;1041
37.7;7 Market and Opportunities;1046
37.8;8 Final Considerations;1047
37.9;Acknowledgements;1047
37.10;References;1048
38;37 Impact of Nanoparticle Shape, Size, and Properties of Silver Nanocomposites and Their Applications;1057
38.1;1 Introduction;1057
38.2;2 Different Synthesis Methods of Silver Nanoparticles;1059
38.2.1;2.1 Physical Methods;1059
38.2.2;2.2 Photochemical Methods;1060
38.2.3;2.3 Biological Methods;1060
38.2.3.1;2.3.1 Microbe-Assisted Synthesis;1061
38.2.3.2;2.3.2 Plant-Mediated Synthesis;1061
38.2.4;2.4 Chemical Methods;1062
38.3;3 Nanocomposite Systems;1063
38.3.1;3.1 Silver-Ceramic Matrix Nanocomposites;1064
38.3.2;3.2 Silver-Metal Matrix Nanocomposites;1065
38.3.3;3.3 Silver-Polymer Matrix Nanocomposites;1065
38.4;4 Applications of Silver Nanocomposites;1067
38.4.1;4.1 Medical Field;1067
38.4.2;4.2 Food Industry;1069
38.4.3;4.3 Water Treatment;1071
38.4.4;4.4 Textiles;1072
38.4.5;4.5 Nanopaints;1072
38.4.6;4.6 Personal Care Products;1072
38.5;5 Conclusion;1073
38.6;References;1073
39;38 Toxicological Evaluations of Nanocomposites with Special Reference to Cancer Therapy;1082
39.1;1 Introduction;1082
39.1.1;1.1 Nanocomposite Systems;1084
39.1.2;1.2 Synthesis of Nanocomposite Systems: Nanocomposite Materials Are Generally Synthesized Using One of the Two Methods;1084
39.1.2.1;1.2.1 In Situ Method;1084
39.1.2.2;1.2.2 Ex Situ Method;1085
39.1.3;1.3 Synthesis of Au/Ag Supported Mesoporous Metal-Oxide Nanocomposites;1085
39.1.4;1.4 Synthesis of Au/Ag Supported Graphene Nanocomposites;1086
39.1.5;1.5 Synthesis of Au/Ag Supported Polymer Nanocomposites;1088
39.1.6;1.6 Synthesis of Au/Ag Supported Dendrimer Nanocomposites;1089
39.2;2 Applications and Toxicological Evaluations of Gold Nanocomposites;1092
39.2.1;2.1 Silica-Based Gold Nanocomposite;1092
39.2.2;2.2 Lipid-Coated Gold Nanocomposite;1092
39.2.3;2.3 Manganese Oxide-Based Gold Nanocomposites;1093
39.2.4;2.4 Chitosan-Based Gold Nanocomposite;1093
39.2.5;2.5 Graphene-Based Gold Nanocomposite;1095
39.2.6;2.6 Dendrimer Stabilized Gold Nanoparticles;1096
39.2.7;2.7 Iron Oxide Gold Nanocomposite;1096
39.3;3 Applications and Toxicological Evaluations of Silver Nanocomposites;1096
39.3.1;3.1 Graphene Oxide Silver Nanocomposite;1097
39.3.2;3.2 Iron Oxide-Based Silver Nanocomposite;1098
39.3.3;3.3 Dendrimer-Based Silver Nanocomposites;1099
39.3.4;3.4 Silica-Based Silver Nanocomposite;1100
39.4;4 Conclusions;1100
39.5;References;1101
40;39 Synthesis, Characterization and Application of Bio-based Polyurethane Nanocomposites;1109
40.1;1 Introduction;1110
40.2;2 Synthesis of Bio-based Polyurethane Nanocomposite from Vegetable Oil;1114
40.2.1;2.1 Castor Oil Based Polyurethane Nanocomposites;1115
40.2.2;2.2 Jatropha Oil Based Polyurethane Nanocomposite;1124
40.2.3;2.3 Palm Oil-Based Polyurethane Nanocomposites;1127
40.3;3 Application of PU Nanocomposites;1130
40.3.1;3.1 Coatings;1130
40.3.2;3.2 Adhesives;1133
40.3.3;3.3 Medical;1134
40.3.4;3.4 Elastomers;1138
40.4;4 Conclusion;1142
40.5;References;1142
41;40 Clay Based Biopolymer Nanocomposites and Their Applications in Environmental and Biomedical Fields;1147
41.1;1 Introduction;1147
41.2;2 Preparation Methods of Polymer Clay Nanocomposites;1149
41.2.1;2.1 Solution Intercalation Method;1149
41.2.2;2.2 Melt Intercalation Method;1150
41.2.3;2.3 In Situ Intercalative Polymerization;1150
41.3;3 Biomedical Applications of Polymeric Clay Nanocomposites;1151
41.3.1;3.1 As Drug Delivery System;1151
41.3.2;3.2 In Tissue Engineering;1155
41.3.3;3.3 As Regenerative Repair in Wound Healing;1157
41.3.4;3.4 As Biosensors;1159
41.4;4 Environmental Applications of Polymeric Clay Nanocomposites;1161
41.4.1;4.1 For Heavy Metal Removal;1161
41.4.2;4.2 For Dye Removal;1163
41.4.3;4.3 For General Wastewater Treatment;1165
41.5;5 Future Challenges;1166
41.6;6 Conclusion;1166
41.7;References;1167
42;41 Thermal Behaviour and Crystallization of Green Biocomposites;1172
42.1;1 Introduction;1174
42.2;2 Thermal Analysis as an Analytical Method of Green Composites Characterization;1175
42.2.1;2.1 Differential Scanning Calorimetry;1175
42.2.2;2.2 Thermogravimetric Analysis;1177
42.3;3 Glass Transition and Physical Ageing of Green Biocomposites;1179
42.4;4 Melting and Crystallization of Green Biocomposites;1185
42.4.1;4.1 Effects Induced by Reinforcing of Natural Fibers;1185
42.4.2;4.2 Effect of Micro and Nanocellulose Loading;1193
42.5;5 Thermal Stability and Degradation of Green Composites;1201
42.5.1;5.1 Thermogravimetry of Green Composites Containing Natural Fibers;1202
42.5.2;5.2 Thermogravimetry of Green Composites Containing Cellulosic Nanoparticles;1208
42.6;6 Conclusions;1211
42.7;References;1214
43;42 Eco-friendly Polymer Composite: State-of-Arts, Opportunities and Challenge;1219
43.1;1 Introduction;1219
43.1.1;1.1 What Are Eco-friendly Composites (EFC);1220
43.1.2;1.2 Why Eco-friendly Composites and Trends;1222
43.1.3;1.3 Properties of Eco-friendly Composites;1224
43.1.4;1.4 Challenges in the Processing of Eco-friendly Composites;1224
43.1.5;1.5 Opportunities;1225
43.2;2 Processing of Eco-friendly Composites;1225
43.2.1;2.1 Chemistry of Eco-friendly Composites: Matrix and Fillers for Production of EFC;1226
43.2.2;2.2 Various Processing Methods;1230
43.2.3;2.3 Effect of Processing Technique;1234
43.3;3 Challenges;1236
43.3.1;3.1 Drawbacks in the Processing of EFCs;1236
43.3.2;3.2 Work on Eco-friendly Composites and Effect on Properties;1238
43.4;4 Current Opportunities;1244
43.4.1;4.1 Future Opportunities in EFC;1244
43.5;5 Conclusions;1244
43.6;References;1245
44;43 Synthesis, Characterization, and Applications of Hemicelluloses Based Eco-friendly Polymer Composites;1252
44.1;1 Introduction;1256
44.1.1;1.1 Occurrence of Hemicellulose;1257
44.1.2;1.2 Structure of Hemicellulose;1257
44.2;2 Synthesis and Characterization of Modified Hemicelluloses (Zero-Dimensional);1258
44.2.1;2.1 Esterification;1259
44.2.2;2.2 Etherification;1264
44.2.3;2.3 Amination;1268
44.2.4;2.4 Amidation;1270
44.2.5;2.5 Acetylation;1271
44.2.6;2.6 Grafting Copolymerization;1273
44.2.7;2.7 Oxidation;1274
44.3;3 Hemicellulose-Based Particles (Zero-Dimensional);1276
44.4;4 Hemicelluloses-Based Films and Coatings (Two-Dimensional);1278
44.4.1;4.1 Blending;1278
44.4.2;4.2 Cross-Linking;1283
44.4.3;4.3 Grafting;1283
44.4.4;4.4 Other Modifications;1284
44.5;5 Hemicellulose-Based Hydrogels (Three-Dimensional);1285
44.5.1;5.1 Cross-Linking Hemicellulose-Based Hydrogels;1285
44.5.2;5.2 Conductive Hemicellulose-Based Hydrogels;1289
44.5.3;5.3 Hemicellulose-Polymer Composite Gels (Hydrogels and Aerogels);1292
44.6;6 Summary and Outlook;1298
44.7;References;1299
45;44 Self-healing Bio-composites: Concepts, Developments, and Perspective;1308
45.1;1 Introduction;1308
45.1.1;1.1 Fundamentals of Self-healing;1309
45.1.2;1.2 Biocomposites: Substitutes for Fossil-Based Composites;1310
45.2;2 Self-healing Biocomposites Based on Non-covalent Bonding (Supramolecular);1310
45.2.1;2.1 Self-healing of Biocomposites on the Basis of Hydrogen Bonding;1311
45.2.2;2.2 Self-healing of Biocomposites on the Basis of Metal-Ligand Coordination;1312
45.2.3;2.3 Self-healing of Biocomposites on the Basis of ?–? Stacking Interaction;1313
45.2.4;2.4 Self-healing of Biocomposites on the Basis of Ionic Interactions;1314
45.2.5;2.5 Self-healing of Biocomposites on the Basis of Macrocyclic Host–Guest Interactions;1314
45.3;3 Self-healing Biocomposites Based on Covalent Bonding;1315
45.3.1;3.1 DA Based Self-healing Nanocomposites;1316
45.3.2;3.2 DA Based Self-healing Biocomposites Containing Fibers;1317
45.3.3;3.3 DA Based Self-healing Biocomposites Containing Encapsulated Maleimides;1318
45.3.4;3.4 Self-healing of Schiff-Base Biocomposites;1318
45.4;4 Self-healing of Microcapsule-Based Biocomposites;1319
45.5;5 Self-healing of Biocomposites on the Basis of Melting-Recrystallization Cycles;1322
45.6;6 Summary and Outlook;1322
45.7;References;1323
46;45 Chemical Modification of Lignin and Its Environmental Application;1329
46.1;1 Introduction;1329
46.2;2 Modified Lignin for Dyes Adsorption;1331
46.3;3 Modified Lignin for Heavy Metals Adsorption;1338
46.4;4 Modified Lignin for Other Pollutants Adsorption;1342
46.5;5 Outlook and Conclusions;1344
46.6;Acknowledgements;1344
46.7;References;1344
47;46 Synthesis and Characterization and Application of Chitin and Chitosan-Based Eco-friendly Polymer Composites;1349
47.1;1 Introduction;1349
47.1.1;1.1 History of Chitosan;1349
47.2;2 Production;1351
47.3;3 Chitosan Oligomers;1352
47.4;4 Modifications of Chitosan;1353
47.5;5 Derivatives of Chitosan;1354
47.5.1;5.1 Quaternized Chitosan and N-Alkyl Chitosan;1354
47.5.2;5.2 Hydroxyalkyl Chitosan;1355
47.5.3;5.3 Carboxyalkyl Chitosan;1356
47.5.4;5.4 Sugar Functionalized Chitosan;1356
47.5.5;5.5 Cyclodextrin Linked Chitosan;1357
47.5.6;5.6 N-Acyl Chitosan;1357
47.5.7;5.7 O-Acyl Chitosan;1358
47.5.8;5.8 Thiolated Chitosan;1358
47.5.8.1;5.8.1 Mucous Adhesion Properties;1358
47.5.8.2;5.8.2 Increase in Permeable Properties;1359
47.5.8.3;5.8.3 Cohesive Properties;1359
47.5.9;5.9 Sulfate Modified Chitosan;1359
47.5.10;5.10 Phosphorylated Chitosan;1360
47.5.11;5.11 Enzymatic Modification of Chitosan;1361
47.5.12;5.12 Graft Copolymers of Chitosan;1361
47.5.12.1;5.12.1 Grafting Co-polymerization by Radical Production;1361
47.5.12.2;5.12.2 Polycondensation to Form Co-polymerization;1361
47.5.12.3;5.12.3 Coupling to Copolymerize via Oxidation;1362
47.5.13;5.13 Film-Forming Properties of CS;1362
47.5.14;5.14 Chitosan and Proteins;1362
47.5.15;5.15 Chitosan and Starch Blends;1363
47.5.16;5.16 Edible Membranes of Gelatin and Chitosan;1364
47.5.17;5.17 Composite of Chitosan, Carrageenan and Alginate;1365
47.5.18;5.18 Chitosan and Clay Natural Polymers;1365
47.5.19;5.19 Properties of Gas Permeability of Edible Coatings;1367
47.5.20;5.20 Antimicrobial Applications;1367
47.5.21;5.21 Anti-inflammatory Applications;1367
47.5.22;5.22 Biomedical Applications of Chitosan;1368
47.5.23;5.23 Chitosan-Based Composite Scaffolds in Wound Healings;1368
47.6;6 Introduction to Chitin;1369
47.7;7 Chemical Modifications of Chitin;1371
47.8;8 Chitin Fiber Formation;1372
47.9;9 Preparation of Blends with Other Fibers/Polymers;1372
47.10;10 Chitin General Characterization;1374
47.11;11 Chemical Structure and Properties;1375
47.12;12 Chitin Biosynthesis;1376
47.13;13 Industrial Processing of Chitin;1377
47.14;14 Chitin Biomedical and Nanomedical Applications;1379
47.14.1;14.1 Tissue Engineering;1379
47.14.2;14.2 Wound Healing;1380
47.14.3;14.3 Drug Delivery;1381
47.14.4;14.4 Cancer Diagnosis;1381
47.14.5;14.5 Chitin-Based Dressings;1382
47.14.6;14.6 Antiaging Cosmetics;1382
47.15;15 Conclusion;1382
47.16;References;1383
48;47 Nanocomposites for Environmental Pollution Remediation;1390
48.1;1 Introduction;1391
48.1.1;1.1 Heavy Metal Pollution;1391
48.1.2;1.2 Organic Pollutants;1392
48.1.2.1;1.2.1 Water Pollution by Synthetic Organic Dyes;1392
48.1.3;1.3 Methods for the Remediation of Pollutants;1393
48.2;2 Adsorption: An Advantageous Process for Pollution Remediation;1395
48.2.1;2.1 Biosorption;1396
48.3;3 Nanocomposites;1397
48.3.1;3.1 Bio-nanocomposites;1398
48.3.1.1;3.1.1 Bionanocomposites for Pollution Remediation;1398
48.3.2;3.2 Clay-Based Nanocomposites;1401
48.3.3;3.3 Polymer-Layered Silicate Nanocomposites (PLSN);1404
48.3.3.1;3.3.1 Structure of PLSN;1404
48.3.3.2;3.3.2 Methods of Preparation of PLSN;1406
48.3.3.3;3.3.3 Challenges in Use of PLSN;1407
48.3.3.4;3.3.4 PLSN with Bio-based Polymer Matrices;1407
48.3.4;3.4 Clay-Based Nanocomposites for Pollution Remediation;1408
48.4;References;1415
49;Correction to: Chapter “Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite” in: Inamuddin et al. (eds.), Sustainable Polymer Composites and Nanocomposites,https://doi.org/10.1007/978-3-030-05399-4_8;1424




