E-Book, Englisch, Band Volume 314, 298 Seiten
International Review of Cell and Molecular Biology
1. Auflage 2015
ISBN: 978-0-12-802481-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 314, 298 Seiten
Reihe: International Review of Cell and Molecular Biology
ISBN: 978-0-12-802481-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
International Review of Cell and Molecular Biology presents comprehensive reviews and current advances in cell and molecular biology. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. The series has a world-wide readership, maintaining a high standard by publishing invited articles on important and timely topics authored by prominent cell and molecular biologists. Impact factor for 2013: 4.522. - Authored by some of the foremost scientists in the field - Provides comprehensive reviews and current advances - Wide range of perspectives on specific subjects - Valuable reference material for advanced undergraduates, graduate students and professional scientists
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;International Review of Cell and Molecular Biology;2
3;International Review of Cell and Molecular Biology;3
4;International Review of Cell and Molecular Biology
;4
5;Copyrights
;5
6;Contents;6
7;Contributors;10
8;Epidermal Growth Factor Signaling in Transformed Cells;12
8.1;1. Introduction;13
8.2;2. Hallmarks of Transformation;14
8.2.1;2.1 Epithelial–Mesenchymal Transition;15
8.2.2;2.2 Role of EGFR in EMT;18
8.3;3. The ErbB/HER Receptor Family in Normal and Transformed Cells;19
8.3.1;3.1 Overview of EGFR Receptors, Ligands, and Signaling;19
8.3.2;3.2 ErbB/HER Family Members in Transformed Cells;21
8.3.3;3.3 EGFR Mutations;21
8.3.4;3.4 EGFR Polymorphism;22
8.3.5;3.5 EGFR Ligands;23
8.4;4. EGFR Signaling in Normal and Transformed Cells;24
8.4.1;4.1 Loss of Cell Adhesion and EGFR Signaling;25
8.4.2;4.2 Tumor Microenvironment and EGFR Signaling;26
8.4.3;4.3 Posttranslational Modifications and EGFR Signaling;28
8.4.4;4.4 Epigenetic Influences on EGFR Signaling;28
8.4.5;4.5 MicroRNAs and EGFR;29
8.4.6;4.6 Compartmentalization and Trafficking of EGFR;30
8.4.7;4.7 EGFR Transactivation;31
8.5;5. Cross Talk between EGFR Signaling and Other Major Signaling Pathways in Transformed Cells;32
8.5.1;5.1 Mesenchymal Epithelial Transition Factor;32
8.5.2;5.2 Transforming Growth Factor-Beta;33
8.5.3;5.3 Insulin-like Growth Factor;34
8.5.4;5.4 Sonic Hedgehog;34
8.5.5;5.5 Wnt;35
8.5.6;5.6 Notch;35
8.6;6. Therapy;36
8.6.1;6.1 EGFR as Target for Cancer Therapy;37
8.6.2;6.2 Anti-EGFR Therapy Approaches;37
8.6.3;6.3 Resistance to EGFR Therapy;39
8.7;7. Concluding Remarks;40
8.8;Acknowledgments;40
8.9;References;40
9;New Insights into Antimetastatic and Antiangiogenic Effects of Cannabinoids;54
9.1;1. Introduction;57
9.2;2. Cannabinoids as Systemic Anticancer Drugs;59
9.2.1;2.1 Range of Antitumorigenic Mechanisms of Cannabinoids;59
9.2.2;2.2 Cannabinoids: Clinical Implication as Systemic Anticancer Drugs;60
9.2.2.1;2.2.1 Case–control studies with Cannabis smokers;60
9.2.2.2;2.2.2 The endocannabinoid system as tumor-defense mechanism;62
9.2.2.3;2.2.3 Combinational cancer therapies with cannabinoids;64
9.2.2.4;2.2.4 Cannabinoids' impact on tumor-immune surveillance;67
9.2.3;2.3 Cannabinoids as Potential Clinical Option to Counteract Tumor Metastasis and Angiogenesis;70
9.3;3. Cannabinoids and Tumor Angiogenesis;72
9.3.1;3.1 Angiogenesis in Physiological and Pathophysiological Tissue Development;72
9.3.2;3.2 Cannabinoids' Effects on Tumor Angiogenesis In vivo;86
9.3.3;3.3 Direct Effects of Cannabinoids on Vascular Endothelial Cells;88
9.3.4;3.4 Impact of Cannabinoids on the Release of Angiogenic Factors from Tumor Cells;93
9.3.5;3.5 Cannabinoids and Angiogenesis: A Critical Outlook;95
9.4;4. Effects of Cannabinoids on Tumor Cell Metastasis;95
9.4.1;4.1 Impact of Cannabinoids on Tumor Cell Migration;96
9.4.2;4.2 Impact of Cannabinoids on Tumor Cell Invasion;97
9.4.2.1;4.2.1 Contribution of the endocannabinoid system to tumor cell invasion;101
9.4.3;4.3 Effects of Cannabinoids on Metastasis In vivo;104
9.4.4;4.4 Cannabinoids and Metastasis: A Critical Outlook;107
9.5;5. Conclusion;108
9.6;References;108
10;Insight into the Role of Wnt5a-Induced Signaling in Normal and Cancer Cells;128
10.1;1. Introduction;129
10.2;2. Wnt5a–Ror2 Axis in Developmental Morphogenesis;130
10.2.1;2.1 Planar Cell Polarity;131
10.2.2;2.2 CE Movements;132
10.2.3;2.3 Epithelial–Mesenchymal Interaction;134
10.3;3. Roles of Wnt5a–Ror2 Axis in Normal Cell Functions;135
10.3.1;3.1 Cell Polarity;136
10.3.2;3.2 Cell Migration;137
10.3.3;3.3 Gene Expression;139
10.3.4;3.4 Maintenance of Stemness;140
10.4;4. Wnt5a–Ror2 and Ror1 Axes in Cancer Cells;142
10.4.1;4.1 Tumor-Progressive Functions;142
10.4.1.1;4.1.1 Epithelial-to-mesenchymal transition and Wnt5a-Ror2 axis;142
10.4.1.2;4.1.2 Wnt5a–Ror2 axis in high motility and invasion;143
10.4.1.3;4.1.3 Wnt5a–Ror2 axis in metastasis;144
10.4.1.4;4.1.4 Ror1 axis in survival and proliferation of cancer cells;145
10.4.1.5;4.1.5 Cross talk with different signaling axes;147
10.4.1.6;4.1.6 Ror1 axis in drug resistance;148
10.4.2;4.2 Tumor-Suppressive Functions of Wnt5a;149
10.5;5. Concluding Remarks;149
10.6;Acknowledgments;151
10.7;References;151
11;New Insight into Cancer Aneuploidy in Zebrafish;160
11.1;1. Introduction;161
11.2;2. The Cause of Aneuploidy;162
11.3;3. Biological Effects of Aneuploidy;163
11.3.1;3.1 Gene Expression and Dosage Compensation;163
11.3.2;3.2 Impacts on Organism Fitness;164
11.3.3;3.3 Cellular Impacts on Noncancerous Cells;165
11.3.4;3.4 Aneuploidy in Cancer;165
11.4;4. Zebrafish as a Cancer Model for Human Cancers;166
11.4.1;4.1 Polyploid Zebrafish;167
11.4.2;4.2 Zebrafish Aneuploid Mutants;168
11.4.3;4.3 Aneuploid Nature of Zebrafish Cancers;169
11.5;5. Cancer Driver Genes on Aneuploid Chromosomes;170
11.5.1;5.1 Finding Cancer Driver Genes by Cross-Species Comparisons;170
11.5.2;5.2 Functional Validations of Cancer Driver Genes;173
11.6;6. Future Directions;173
11.7;Acknowledgments;175
11.8;References;175
12;The Amazing Ubiquitin-Proteasome System: Structural Components and Implication in Aging;182
12.1;1. Introduction;184
12.2;2. Aging;186
12.3;3. The Ubiquitin System;190
12.3.1;3.1 Ub-Conjugating Enzymes;191
12.3.2;3.2 The Fate of the Ubiquitinated Protein;193
12.3.3;3.3 Recycling of Ub;194
12.4;4. The Proteasome;195
12.4.1;4.1 20S CP: Structure, Function, and Assembly;195
12.4.2;4.2 19S RP: Structure, Function, and Assembly;198
12.4.3;4.3 Alternative Proteasome Forms;200
12.4.4;4.4 Subcellular Localization and Regulation of the Proteasome;200
12.4.5;4.5 The Endoplasmic Reticulum-Associated Degradation;205
12.4.6;4.6 The Outer Mitochondrial Membrane-Associated Degradation;208
12.4.7;4.7 Cross Talk between the UPS and the other Components of the Cellular Proteostasis Network;209
12.4.7.1;4.7.1 UPS and the other proteolytic pathways;209
12.4.7.2;4.7.2 UPS and the network of molecular chaperones;210
12.4.7.3;4.7.3 UPS and cellular antioxidant responses;211
12.5;5. Regulation of the Ub System during Cellular Senescence and In vivo Aging;213
12.6;6. Implication of ERAD and OMMAD in Cellular Senescence and In vivo Aging;214
12.7;7. Alterations of the Proteasome Functionality during Cellular Senescence and In vivo Aging;215
12.8;8. Modulation of the UPS as an Antiaging Approach;219
12.9;9. Conclusive Remarks and Perspectives;222
12.10;Acknowledgments;223
12.11;References;223
13;Biogenesis and Function of the NGF/TrkA Signaling Endosome;250
13.1;1. Introduction;251
13.2;2. NGF;253
13.2.1;2.1 Biogenesis;253
13.2.2;2.2 Physiological Importance;254
13.3;3. TrkA;254
13.3.1;3.1 Biogenesis and Localization;255
13.3.2;3.2 Signaling;256
13.4;4. The Signaling Endosome;257
13.4.1;4.1 Biogenesis;259
13.4.2;4.2 Trafficking;261
13.4.3;4.3 Rab Function;261
13.5;5. Concluding Remarks;263
13.6;Acknowledgments;264
13.7;References;264
14;Multiple Myeloma as a Model for the Role of Bone Marrow Niches in the Control of Angiogenesis;270
14.1;1. Introduction;270
14.2;2. EPCs and MSCs;272
14.3;3. Vascular Niche;273
14.4;4. Osteoblastic Niche;274
14.5;5. MM Niche and Angiogenesis;276
14.6;6. Targeting Angiogenesis in the MM Niche;280
14.7;7. Concluding Remarks;284
14.8;Acknowledgments;285
14.9;References;285
15;Index;294




