Ioffe / Reich / Shafrir | Calculus of Variations and Optimal Control | Buch | 978-1-58488-024-0 | sack.de

Buch, Englisch, 280 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 408 g

Reihe: Chapman & Hall/CRC Research Notes in Mathematics Series

Ioffe / Reich / Shafrir

Calculus of Variations and Optimal Control


1. Auflage 1999
ISBN: 978-1-58488-024-0
Verlag: Chapman and Hall/CRC

Buch, Englisch, 280 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 408 g

Reihe: Chapman & Hall/CRC Research Notes in Mathematics Series

ISBN: 978-1-58488-024-0
Verlag: Chapman and Hall/CRC


The calculus of variations is a classical area of mathematical analysis-300 years old-yet its myriad applications in science and technology continue to hold great interest and keep it an active area of research. These two volumes contain the refereed proceedings of the international conference on Calculus of Variations and Related Topics held at the Technion-Israel Institute of Technology in March 1998. The conference commemorated 300 years of work in the field and brought together many of its leading experts.
The papers in the first volume focus on critical point theory and differential equations. The other volume deals with variational aspects of optimal control. Together they provide a unique opportunity to review the state-of-the-art of the calculus of variations, as presented by an international panel of masters in the field.

Ioffe / Reich / Shafrir Calculus of Variations and Optimal Control jetzt bestellen!

Zielgruppe


Professional

Weitere Infos & Material


Calculus of Variations and Differential Equations- On the Existence of the Impossible Pilot Wave, V. Benci Multiply Connected Mesoscopic Superconducting Structures, J. Berge, J. Rubinstein, and M. Schatzman The Role of Monotonicity in some Shape Optimization Problems, G. Buttazzo and P. Trebeschi A Weak Notion of Convergence in Capacity with Applications to Thin Obstacle Problems, J. Casado-Diaz and G. Dal Maso On Critical Point Theory with the (P S)* Condition, J.N. Corvellec On e-Monotonicity and e-Convexity, T.L. Dinh, V.M. Huynh, and M. Thera Approximations of One-Sided Lipschitz Differential Inclusions with Discontinuous Right-Hand Sides, T. Donchev and E. Farkhi Nonlinear Optimization: On the Min-Max Digraph and Global Smoothing, H.Th. Jongen and A. Ruiz Jhones On Radially Symmetric Minimizers of Second Order Two-Dimensional Variational Problems, A. Leizarowitz and M. Marcus Some, Theorems and Partial Differential Equations, A. Marino and C. Saccon Bounded and Almost Periodic Solutions of Nonlinear Differential Equations: Variational vs. Non-Variational Approach, J. Mawhin New Developments Concerning the Lavrentiev Phenomenon, V.J. Mizel Positive Solutions for Elliptic Equations with Critical Growth in Unbounded Domains, M. Ramos, Z.Q. Wang, and M. Willem On the Minimization of Convex Functionals, S. Reich and A. Zaslavski Semilinear Elliptic Problems on Unbounded Domains, I. Schindler and K. Tintarev On the Ginzburg-Landau Equation with Magnetic Field, S. Serfaty Techniques for Maximal Monotonicity, S. Simons Fast-Slow Dynamics and Relaxing Evolution Equations, M. Slemrod


Alexander Ioffe (Author) Simeon Reich (Author) I Shafrir (Author)



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.