Izenman | Modern Multivariate Statistical Techniques | Buch | 978-1-4939-3832-2 | sack.de

Buch, Englisch, 733 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1268 g

Reihe: Springer Texts in Statistics

Izenman

Modern Multivariate Statistical Techniques

Regression, Classification, and Manifold Learning
Softcover Nachdruck of the original 1. Auflage 2008
ISBN: 978-1-4939-3832-2
Verlag: Springer

Regression, Classification, and Manifold Learning

Buch, Englisch, 733 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1268 g

Reihe: Springer Texts in Statistics

ISBN: 978-1-4939-3832-2
Verlag: Springer


Remarkable advances in computation and data storage and the ready availability of huge data sets have been the keys to the growth of the new disciplines of data mining and machine learning, while the enormous success of the Human Genome Project has opened up the field of bioinformatics.

These exciting developments, which led to the introduction of many innovative statistical tools for high-dimensional data analysis, are described here in detail. The author takes a broad perspective; for the first time in a book on multivariate analysis, nonlinear methods are discussed in detail as well as linear methods. Techniques covered range from traditional multivariate methods, such as multiple regression, principal components, canonical variates, linear discriminant analysis, factor analysis, clustering, multidimensional scaling, and correspondence analysis, to the newer methods of density estimation, projection pursuit, neural networks, multivariate reduced-rank regression, nonlinear manifold learning, bagging, boosting, random forests, independent component analysis, support vector machines, and classification and regression trees. Another unique feature of this book is the discussion of database management systems.

This book is appropriate for advanced undergraduate students, graduate students, and researchers in statistics, computer science, artificial intelligence, psychology, cognitive sciences, business, medicine, bioinformatics, and engineering. Familiarity with multivariable calculus, linear algebra, and probability and statistics is required. The book presents a carefully-integrated mixture of theory and applications, and of classical and modern multivariate statistical techniques, including Bayesian methods. There are over 60 interesting data sets used as examples in the book, over 200 exercises, and many color illustrations and photographs.

Izenman Modern Multivariate Statistical Techniques jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


and Preview.- Data and Databases.- Random Vectors and Matrices.- Nonparametric Density Estimation.- Model Assessment and Selection in Multiple Regression.- Multivariate Regression.- Linear Dimensionality Reduction.- Linear Discriminant Analysis.- Recursive Partitioning and Tree-Based Methods.- Artificial Neural Networks.- Support Vector Machines.- Cluster Analysis.- Multidimensional Scaling and Distance Geometry.- Committee Machines.- Latent Variable Models for Blind Source Separation.- Nonlinear Dimensionality Reduction and Manifold Learning.- Correspondence Analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.