Buch, Englisch, 262 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g
ISBN: 978-0-412-61630-3
Verlag: Springer Netherlands
Adaptive Analog VLSI Neural Systems is the first practical book on neural networks learning chips and systems. It covers the entire process of implementing neural networks in VLSI chips, beginning with the crucial issues of learning algorithms in an analog framework and limited precision effects, and giving actual case studies of working systems.
The approach is systems and applications oriented throughout, demonstrating the attractiveness of such an approach for applications such as adaptive pattern recognition and optical character recognition.
Dr Jabri and his co-authors from AT&T Bell Laboratories, Bellcore and the University of Sydney provide a comprehensive introduction to VLSI neural networks suitable for research and development staff and advanced students.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Mikroprozessoren
- Mathematik | Informatik EDV | Informatik Informatik Rechnerarchitektur
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Bauelemente, Schaltkreise
- Mathematik | Informatik EDV | Informatik Technische Informatik Hochleistungsrechnen, Supercomputer
Weitere Infos & Material
Overview. Introduction to neural computing. MOS devices and circuits. Analogue VLSI building blocks. Kakadu - a micropower neural network. Supervised learning in an analog framework. A micropower intracardiac electrogram classifier. On-chip perturbation based learning. An analog memory technique. Switched capacitor techniques. A high speed image understanding system. A Boltzmann machine learning system. References. Index.