Buch, Englisch, 352 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 878 g
Buch, Englisch, 352 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 878 g
ISBN: 978-1-118-67764-3
Verlag: Wiley
The relationship between infection and immunity and autophagy, a pathway of cellular homeostasis and stress response, has been a rapidly growing field of study over the last decade. While some cellular processes are pro- or anti-infection, autophagy has been proven to be both: a part of the innate immune response against some microbes, and a cellular pathway subverted by some pathogens to promote their own replication.
Autophagy, Infection, and the Immune Response provides a unified overview of the roles of cellular autophagy during microbial infection. Introductory chapters ground the reader by delineating the autophagic pathway from a cellular perspective, and by listing assays available for measuring autophagy. Subsequent chapters address virus interactions with autophagy machinery, the various roles of autophagy parasitic infection, and interactions of bacteria with the autophagic pathway. Concluding chapters explore the relationships of autophagy to systemic immune responses, including antigen presentation, ER stress, and production of IFN-gamma.
Designed as a resource for those interested in initiating studies on the relationship between autophagy and infection or immunity, Autophagy, Infection, and the Immune Response combines practical state-of the art technique descriptions with an overview of the wide variety of known interactions between pathogens and the autophagic pathway.
Autoren/Hrsg.
Weitere Infos & Material
Contributors xiii
Preface xvii
Acknowledgments xix
1 Autophagy and Immunity 1
Xu Liu and Daniel J. Klionsky
1.1 Introduction 1
1.2 Autophagy 2
1.2.1 Types of autophagy 2
1.2.2 Morphology 3
1.2.3 Molecular machinery 3
1.2.4 Physiological roles 5
1.3 Autophagy and immunity 6
1.3.1 Xenophagy: autophagic clearance of intracellular microorganisms 6
1.3.2 Autophagy and cryptides 9
1.3.3 Autophagy and pattern recognition receptors (PRRs) 9
1.3.4 Autophagy and MHC antigen presentation 10
1.3.5 Autophagy regulation by immune signaling molecules 11
1.3.6 Autophagy, inflammation, and autoimmunity 11
1.4 Conclusion 12
References 12
2 Techniques for Studying Autophagy 19
Isei Tanida and Masato Koike
2.1 Introduction 19
2.2 Reagents and tools for studying autophagy 21
2.2.1 Reagents to monitor the lysosomal flux of LC3-II 21
2.2.2 Reagents that induce autophagy 21
2.2.3 Reagents and recombinant tools that inhibit autophagy 22
2.3 Detection of LC3-I and LC3-II by immunoblotting 22
2.4 Immunofluorescent analyses of endogenous LC3 23
2.5 Monitoring autophagy using fluorescent protein-tagged LC3 23
2.6 Morphological analyses of autophagosomes and autolysosomes by TEM 24
2.6.1 Reagents or stock solutions 26
2.6.2 Resin embedding of cell pellets or microbes 26
2.6.3 Resin flat embedding of cells grown on glass or plastic coverslips 27
2.7 Techniques for immunoelectron microscopy 28
References 29
3 Role of Autophagy In DNA Virus Infections in Vivo 33
Xiaonan Dong and Beth Levine
3.1 Introduction 33
3.2 In vivo interplay between autophagy and DNA viruses in plants and invertebrates 34
3.3 In vivo interplay between autophagy and DNA viruses in vertebrates 35
3.3.1 Autophagy is an essential antiviral mec