Jakushokas / Popovich / Mezhiba | Power Distribution Networks with On-Chip Decoupling Capacitors | E-Book | www.sack.de
E-Book

E-Book, Englisch, 644 Seiten

Jakushokas / Popovich / Mezhiba Power Distribution Networks with On-Chip Decoupling Capacitors


2. Auflage 2011
ISBN: 978-1-4419-7871-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 644 Seiten

ISBN: 978-1-4419-7871-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power distribution systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this second edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.

Jakushokas / Popovich / Mezhiba Power Distribution Networks with On-Chip Decoupling Capacitors jetzt bestellen!

Weitere Infos & Material


1;Contents;8
2;1 Preface to the Second Edition;20
3;2 Preface to the First Edition;24
4;Part I General Background;28
4.1;1 Introduction;31
4.1.1;1.1 Evolution of integrated circuit technology;33
4.1.2;1.2 Evolution of design objectives;36
4.1.3;1.3 The problem of power distribution;40
4.1.4;1.4 Deleterious effects of power distribution noise;46
4.1.4.1;1.4.1 Signal delay uncertainty;47
4.1.4.2;1.4.2 On-chip clock jitter;47
4.1.4.3;1.4.3 Noise margin degradation;50
4.1.4.4;1.4.4 Degradation of gate oxide reliability;50
4.1.5;1.5 Summary;51
4.2;2 Inductive Properties of Electric Circuits;52
4.2.1;2.1 Definitions of inductance;53
4.2.1.1;2.1.1 Field energy definition;53
4.2.1.2;2.1.2 Magnetic flux definition;55
4.2.1.3;2.1.3 Partial inductance;60
4.2.1.4;2.1.4 Net inductance;65
4.2.2;2.2 Variation of inductance with frequency;68
4.2.2.1;2.2.1 Uniform current density approximation;69
4.2.2.2;2.2.2 Inductance variation mechanisms;70
4.2.2.2.1;Skin effect;70
4.2.2.2.2;Proximity effect;70
4.2.2.2.3;Multi-path current redistribution;72
4.2.2.3;2.2.3 Simple circuit model;74
4.2.3;2.3 Inductive behavior of circuits;77
4.2.4;2.4 Inductive properties of on-chip interconnect;79
4.2.5;2.5 Summary;83
4.3;3 Properties of On-Chip Inductive Current Loops;84
4.3.1;3.1 Introduction;84
4.3.2;3.2 Dependence of inductance on line length;85
4.3.3;3.3 Inductive coupling between two parallel loop segments;92
4.3.4;3.4 Application to circuit analysis;93
4.3.5;3.5 Summary;94
4.4;4 Electromigration;96
4.4.1;4.1 Physical mechanism of electromigration;97
4.4.2;4.2 Electromigration-induced mechanical stress;100
4.4.3;4.3 Steady state limit of electromigration damage;101
4.4.4;4.4 Dependence of electromigration lifetime on the line dimensions;103
4.4.5;4.5 Statistical distribution of electromigration lifetime;106
4.4.6;4.6 Electromigration lifetime under AC current;107
4.4.7;4.7 A comparison of aluminum and copper interconnect technologies;108
4.4.8;4.8 Designing for electromigration reliability;111
4.4.9;4.9 Summary;111
4.5;5 Decoupling Capacitance;113
4.5.1;5.1 Introduction to decoupling capacitance;114
4.5.1.1;5.1.1 Historical retrospective;114
4.5.1.2;5.1.2 Decoupling capacitor as a reservoir of charge;115
4.5.1.3;5.1.3 Practical model of a decoupling capacitor;117
4.5.2;5.2 Impedance of power distribution system with decoupling capacitors;121
4.5.2.1;5.2.1 Target impedance of a power distribution system;121
4.5.2.2;5.2.2 Antiresonance;124
4.5.2.3;5.2.3 Hydraulic analogy of hierarchical placement of decoupling capacitors;128
4.5.2.3.1;Fully compensated system;132
4.5.3;5.3 Intrinsic vs intentional on-chip decoupling capacitance;133
4.5.3.1;5.3.1 Intrinsic decoupling capacitance;134
4.5.3.2;5.3.2 Intentional decoupling capacitance;138
4.5.4;5.4 Types of on-chip decoupling capacitors;140
4.5.4.1;5.4.1 Polysilicon-insulator-polysilicon (PIP) capacitors;141
4.5.4.2;5.4.2 MOS capacitors;143
4.5.4.2.1;Accumulation;145
4.5.4.2.2;Depletion;146
4.5.4.2.3;Inversion;147
4.5.4.3;5.4.3 Metal-insulator-metal (MIM) capacitors;151
4.5.4.4;5.4.4 Lateral flux capacitors;153
4.5.4.4.1;Fractal capacitors;153
4.5.4.4.2;Woven capacitors;156
4.5.4.4.3;Vertical parallel plate (VPP) capacitors;156
4.5.4.5;5.4.5 Comparison of on-chip decoupling capacitors;157
4.5.5;5.5 On-chip switching voltage regulator;159
4.5.6;5.6 Summary;161
4.6;6 Scaling Trends of On-Chip Power Distribution Noise;163
4.6.1;6.1 Scaling models;164
4.6.2;6.2 Interconnect characteristics;166
4.6.2.1;6.2.1 Global interconnect characteristics;168
4.6.2.2;6.2.2 Scaling of the grid inductance;168
4.6.2.3;6.2.3 Flip-chip packaging characteristics;169
4.6.2.4;6.2.4 Impact of on-chip capacitance;171
4.6.3;6.3 Model of power supply noise;172
4.6.4;6.4 Power supply noise scaling;174
4.6.4.1;6.4.1 Analysis of constant metal thickness scenario;174
4.6.4.2;6.4.2 Analysis of the scaled metal thickness scenario;175
4.6.4.3;6.4.3 ITRS scaling of power noise;177
4.6.5;6.5 Implications of noise scaling;181
4.6.6;6.6 Summary;182
4.7;7 Conclusions;183
5;Part II Design of Power Systems;184
5.1;8 High Performance Power Distribution Systems;187
5.1.1;8.1 Physical structure of a power distribution system;188
5.1.2;8.2 Circuit model of a power distribution system;189
5.1.3;8.3 Output impedance of a power distribution system;192
5.1.4;8.4 A power distribution system with a decoupling capacitor;195
5.1.4.1;8.4.1 Impedance characteristics;195
5.1.4.2;8.4.2 Limitations of a single-tier decoupling scheme;199
5.1.5;8.5 Hierarchical placement of decoupling capacitance;201
5.1.5.1;Board decoupling capacitors;201
5.1.5.2;Package decoupling capacitors;202
5.1.5.3;On-chip decoupling capacitors;205
5.1.5.4;Advantages of hierarchical decoupling;205
5.1.6;8.6 Resonance in power distribution networks;208
5.1.7;8.7 Full impedance compensation;214
5.1.8;8.8 Case study;216
5.1.9;8.9 Design considerations;219
5.1.9.1;8.9.1 Inductance of the decoupling capacitors;219
5.1.9.2;8.9.2 Interconnect inductance;220
5.1.10;8.10 Limitations of the one-dimensional circuit model;221
5.1.11;8.11 Summary;224
5.2;9 On-Chip Power Distribution Networks;225
5.2.1;9.1 Styles of on-chip power distribution networks;226
5.2.1.1;9.1.1 Basic structure of on-chip power distribution networks;226
5.2.1.1.1;Routed networks;226
5.2.1.1.2;Mesh networks;226
5.2.1.1.3;Grid structured networks;227
5.2.1.1.4;Power and ground planes;229
5.2.1.1.5;Cascaded power/ground rings;230
5.2.1.1.6;Hybrid-structured networks;230
5.2.1.2;9.1.2 Improving the impedance characteristics of on-chip power distribution networks;231
5.2.1.3;9.1.3 Evolution of power distribution networks in Alpha microprocessors;232
5.2.1.3.1;Alpha 21064;233
5.2.1.3.2;Alpha 21164;233
5.2.1.3.3;Alpha 21264;234
5.2.2;9.2 Die-package interface;234
5.2.2.1;Wire-bond packaging;235
5.2.2.2;Flip-chip packaging;236
5.2.2.3;Future packaging solutions;239
5.2.3;9.3 Other considerations;239
5.2.3.1;Dependence of on-chip signal integrity on the structure of the power distribution network;240
5.2.3.2;Interaction between the substrate and the power distribution network;240
5.2.4;9.4 Summary;241
5.3;10 Computer-Aided Design and Analysis;242
5.3.1;10.1 Design flow for on-chip power distribution networks;243
5.3.1.1;Preliminary pre-floorplan design;243
5.3.1.2;Floorplan-based refinement;245
5.3.1.3;Layout-based verification;246
5.3.2;10.2 Linear analysis of power distribution networks;248
5.3.3;10.3 Modeling power distribution networks;250
5.3.3.1;Resistance of the on-chip power distribution network;251
5.3.3.2;Characterization of the on-chip decoupling capacitance;252
5.3.3.3;Inductance of the on-chip power distribution network;253
5.3.3.4;Exploiting symmetry to reduce model complexity;255
5.3.4;10.4 Characterizing the power current requirements of on-chip circuits;257
5.3.4.1;Preliminary evaluation of power current requirements;257
5.3.4.2;Gate level estimates of the power current requirements;258
5.3.5;10.5 Numerical methods for analyzing power distribution networks;259
5.3.5.1;Model partitioning in RC and RLC parts;260
5.3.5.2;Improving the initial condition accuracy of the AC analysis;260
5.3.5.3;Global-local hierarchical analysis;262
5.3.5.4;Random walk based technique;264
5.3.5.5;Multigrid analysis;265
5.3.5.6;Hierarchical analysis of networks with mesh-tree topology;265
5.3.5.7;Efficient analysis of RL trees;266
5.3.6;10.6 Allocation of on-chip decoupling capacitors;266
5.3.6.1;10.6.1 Charge-based allocation methodology;268
5.3.6.2;10.6.2 Allocation strategy based on the excessive noise amplitude;269
5.3.6.3;10.6.3 Allocation strategy based on excessive charge;270
5.3.7;10.7 Summary;272
5.4;11 Closed-Form Expressions for Fast IR Drop Analysis;274
5.4.1;11.1 Background of FAIR;275
5.4.2;11.2 Analytic IR drop analysis;277
5.4.2.1;11.2.1 One power supply and one current load;278
5.4.2.2;11.2.2 One power supply and multiple current loads;280
5.4.2.3;11.2.3 Multiple power supplies and one current load;281
5.4.2.4;11.2.4 Multiple power supplies and multiple current loads;284
5.4.3;11.3 Locality in power grid analysis;286
5.4.3.1;11.3.1 Principle of spatial locality in a power grid;286
5.4.3.2;11.3.2 Effect of spatial locality on computational complexity;290
5.4.3.3;11.3.3 Exploiting spatial locality in FAIR;291
5.4.3.4;11.3.4 Error correction windows;292
5.4.4;11.4 Experimental results;293
5.4.5;11.5 Summary;297
5.5;12 Conclusions;299
6;Part III Noise in Power Distribution Networks;300
6.1;13 Inductive Properties of On-Chip Power Distribution Grids;303
6.1.1;13.1 Power transmission circuit;303
6.1.2;13.2 Simulation setup;306
6.1.3;13.3 Grid types;306
6.1.4;13.4 Inductance versus line width;311
6.1.5;13.5 Dependence of inductance on grid type;312
6.1.5.1;13.5.1 Non-interdigitated versus interdigitated grids;312
6.1.5.2;13.5.2 Paired versus interdigitated grids;313
6.1.6;13.6 Dependence of Inductance on grid dimensions;314
6.1.6.1;13.6.1 Dependence of inductance on grid width;314
6.1.6.2;13.6.2 Dependence of inductance on grid length;316
6.1.6.3;13.6.3 Sheet inductance of power grids;316
6.1.6.4;13.6.4 Efficient computation of grid inductance;317
6.1.7;13.7 Summary;319
6.2;14 Variation of Grid Inductance with Frequency;320
6.2.1;14.1 Analysis approach;320
6.2.2;14.2 Discussion of inductance variation;322
6.2.2.1;14.2.1 Circuit models;322
6.2.2.2;14.2.2 Analysis of inductance variation;325
6.2.3;14.3 Summary;327
6.3;15 Inductance/Area/Resistance Tradeoffs;329
6.3.1;15.1 Inductance vs. resistance tradeoff under a constant grid area constraint;329
6.3.2;15.2 Inductance vs. area tradeoff under a constant grid resistance constraint;334
6.3.3;15.3 Summary;336
6.4;16 Inductance Model of Interdigitated Power and Ground Distribution Networks;338
6.4.1;16.1 Basic four-pair structure;339
6.4.2;16.2 Power and ground distribution network with a large number of interdigitated pairs;340
6.4.3;16.3 Comparison and discussion;345
6.4.4;16.4 Summary;349
6.5;17 On-Chip Power Noise Reduction Techniques;351
6.5.1;17.1 Ground noise reduction through an additional low noise on-chip ground;353
6.5.2;17.2 Dependence of ground bounce reduction on system parameters;355
6.5.2.1;17.2.1 Physical separation between noisy and noise sensitive circuits;356
6.5.2.2;17.2.2 Frequency and capacitance variations;357
6.5.2.3;17.2.3 Impedance of an additional ground path;359
6.5.3;17.3 Summary;360
6.6;18 Noise Issues in On-Chip Power Distribution Networks;362
6.6.1;18.1 Scaling effects in chip-package resonance;363
6.6.2;18.2 Propagation of power distribution noise;365
6.6.3;18.3 Local inductive behavior;368
6.6.4;18.4 Summary;372
6.7;19 Conclusions;373
7;Part IV Placement of On-Chip Decoupling Capacitance;374
7.1;20 Effective Radii of On-Chip Decoupling Capacitors;377
7.1.1;20.1 Background;379
7.1.2;20.2 Effective radius of on-chip decoupling capacitor based on target impedance;381
7.1.3;20.3 Estimation of required on-chip decoupling capacitance;383
7.1.3.1;20.3.1 Dominant resistive noise;384
7.1.3.2;20.3.2 Dominant inductive noise;385
7.1.3.3;20.3.3 Critical line length;388
7.1.4;20.4 Effective radius as determined by charge time;390
7.1.5;20.5 Design methodology for placing on-chip decoupling capacitors;396
7.1.6;20.6 Model of on-chip power distribution network;396
7.1.7;20.7 Case study;399
7.1.8;20.8 Design implications;405
7.1.9;20.9 Summary;406
7.2;21 Efficient Placement of Distributed On-Chip Decoupling Capacitors;408
7.2.1;21.1 Technology constraints;409
7.2.2;21.2 Placing on-chip decoupling capacitors in nanoscale ICs;410
7.2.3;21.3 Design of a distributed on-chip decoupling capacitor network;413
7.2.4;21.4 Design tradeoffs in a distributed on-chip decoupling capacitor network;418
7.2.4.1;21.4.1 Dependence of system parameters on R1;419
7.2.4.2;21.4.2 Minimum C1;420
7.2.4.3;21.4.3 Minimum total budgeted on-chip decoupling capacitance;421
7.2.5;21.5 Design methodology for a system of distributed on-chip decoupling capacitors;423
7.2.6;21.6 Case study;426
7.2.7;21.7 Summary;430
7.3;22 Simultaneous Co-Design of Distributed On-Chip Power Supplies and Decoupling Capacitors;432
7.3.1;22.1 Problem formulation;434
7.3.2;22.2 Simultaneous power supply and decoupling capacitor placement;435
7.3.3;22.3 Case study;437
7.3.4;22.4 Summary;441
7.4;23 Conclusions;442
8;Part V Multi-Layer Power Distribution Networks;443
8.1;24 Impedance Characteristics of Multi-Layer Grids;445
8.1.1;24.1 Electrical properties of multi-layer grids;447
8.1.1.1;24.1.1 Impedance characteristics of individual grid layers;447
8.1.1.2;24.1.2 Impedance characteristics of multi-layer grids;450
8.1.2;24.2 Case study of a two layer grid;452
8.1.2.1;24.2.1 Simulation setup;453
8.1.2.2;24.2.2 Inductive coupling between grid layers;453
8.1.2.3;24.2.3 Inductive characteristics of a two layer grid;457
8.1.2.4;24.2.4 Resistive characteristics of a two layer grid;458
8.1.2.5;24.2.5 Variation of impedance with frequency in a two layer grid;460
8.1.3;24.3 Design implications;461
8.1.4;24.4 Summary;462
8.2;25 Multi-Layer Interdigitated Power Distribution Networks;464
8.2.1;25.1 Single metal layer characteristics;466
8.2.1.1;25.1.1 Optimal width for minimum impedance;468
8.2.1.2;25.1.2 Optimal width characteristics;471
8.2.2;25.2 Multi-layer optimization;474
8.2.2.1;25.2.1 First approach - equal current density;475
8.2.2.2;25.2.2 Second approach - minimum impedance;481
8.2.3;25.3 Discussion;483
8.2.3.1;25.3.1 Comparison;483
8.2.3.2;25.3.2 Routability;484
8.2.3.3;25.3.3 Fidelity;487
8.2.3.4;25.3.4 Critical frequency;488
8.2.4;25.4 Summary;489
8.3;26 Conclusions;491
9;Part VI Multi-Voltage Power Network Systems;492
9.1;27 Multiple On-Chip Power Supply Systems;494
9.1.1;27.1 ICs with multiple power supply voltages;495
9.1.1.1;27.1.1 Multiple power supply voltage techniques;496
9.1.1.2;27.1.2 Clustered voltage scaling (CVS);498
9.1.1.3;27.1.3 Extended clustered voltage scaling (ECVS);499
9.1.2;27.2 Challenges in ICs with multiple power supply voltages;500
9.1.2.1;27.2.1 Die area;501
9.1.2.2;27.2.2 Power dissipation;501
9.1.2.3;27.2.3 Design complexity;502
9.1.2.4;27.2.4 Placement and routing;502
9.1.2.4.1;Area-by-area architecture;503
9.1.2.4.2;Row-by-row architecture;503
9.1.2.4.3;In-row architecture;503
9.1.3;27.3 Optimum number and magnitude of available power supply voltages;505
9.1.4;27.4 Summary;510
9.2;28 On-Chip Power Distribution Grids with Multiple Supply Voltages;512
9.2.1;28.1 Background;514
9.2.2;28.2 Simulation setup;515
9.2.3;28.3 Power distribution grid with dual supply and dual ground;517
9.2.4;28.4 Interdigitated grids with DSDG;520
9.2.4.1;28.4.1 Type I interdigitated grids with DSDG;520
9.2.4.2;28.4.2 Type II interdigitated grids with DSDG;522
9.2.5;28.5 Paired grids with DSDG;524
9.2.5.1;28.5.1 Type I paired grids with DSDG;525
9.2.5.2;28.5.2 Type II paired grids with DSDG;526
9.2.6;28.6 Simulation results;529
9.2.6.1;28.6.1 Interdigitated power distribution grids without decoupling capacitors;530
9.2.6.2;28.6.2 Paired power distribution grids without decoupling capacitors;537
9.2.6.3;28.6.3 Power distribution grids with decoupling capacitors;538
9.2.6.4;28.6.4 Dependence of power noise on the switching frequency of the current loads;542
9.2.7;28.7 Design implications;545
9.2.8;28.8 Summary;547
9.3;29 Decoupling Capacitors for Multi-Voltage Power Distribution Systems;549
9.3.1;29.1 Impedance of a power distribution system;551
9.3.1.1;29.1.1 Impedance of a power distribution system;552
9.3.1.2;29.1.2 Antiresonance of parallel capacitors;555
9.3.1.3;29.1.3 Dependence of impedance on power distribution system parameters;556
9.3.2;29.2 Case study of the impedance of a power distribution system;559
9.3.3;29.3 Voltage transfer function of power distribution system;564
9.3.3.1;29.3.1 Voltage transfer function of a power distribution system;564
9.3.3.2;29.3.2 Dependence of voltage transfer function on power distribution system parameters;566
9.3.4;29.4 Case study of the voltage response of a power distribution system;569
9.3.4.1;29.4.1 Overshoot-free magnitude of a voltage transfer function;571
9.3.4.2;29.4.2 Tradeoff between the magnitude and frequency range;573
9.3.5;29.5 Summary;577
9.4;30 Conclusions;578
10;Part VII Final Comments and Supplementary Material;579
10.1;Closing Remarks;580
11;Appendices;585
11.1;A Estimate of Initial Optimal Width for Interdigitated Power/Ground Network;586
11.2;B First Optimization Approach for Multi-Layer Interdigitated Power Distribution Network;587
11.3;C Second Optimization Approach for Multi-Layer Interdigitated Power Distribution Network;589
11.4;D Mutual Loop Inductance in Fully Interdigitated Power Distribution Grids with DSDG;590
11.5;E Mutual Loop Inductance in Pseudo-Interdigitated Power Distribution Grids with DSDG;592
11.6;F Mutual Loop Inductance in Fully Paired Power Distribution Grids with DSDG;594
11.7;G Mutual Loop Inductance in Pseudo-Paired Power Distribution Grids with DSDG;596
12;References;598
13;Index;626
14;About the Authors;631



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.