E-Book, Englisch, Deutsch, 975 Seiten, eBook
Jeschke / Isenhardt / Hees Automation, Communication and Cybernetics in Science and Engineering 2015/2016
1. Auflage 2016
ISBN: 978-3-319-42620-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Deutsch, 975 Seiten, eBook
ISBN: 978-3-319-42620-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Sabina Jeschke is Head of the ZLW/IMA&IfU Institute Cluster of the RWTH Aachen University.
Ingrid Isenhardt is director deputy head of the IMA/ZLW & IfU Institute Cluster of the RWTH Aachen University.Frank Hees is vice deputy head of the IMA/ZLW & IfU Institute Cluster and managing partner and consultant of the Nets 'n' Clouds Consulting für Technologieentwicklung und Organisationsoptimierung GmbH. Klaus Henning is senior advisor of the IMA/ZLW & IfU Institute Cluster of the RWTH Aachen University and senior consultant at the Osto Systemberatung GmbH.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;5
2;Contents;11
3;Contributors;19
4;Agile and Turbulence-Suitable Processes for Knowledge and Technology Intensive Organizations;25
5;Automated Heterogeneous Platoons in Unstructured Environment: Real Time Tracking of a Preceding Vehicle Using Video;26
5.1;1 Introduction;27
5.2;2 Realization of the Back View Detection;28
5.3;3 Realization of the Back View Tracking;29
5.3.1;3.1 Detection Module;31
5.3.2;3.2 Locating the Search Area;31
5.3.3;3.3 Generation of Factors FK;31
5.3.4;3.4 Calculation of SExpected for FK;32
5.3.5;3.5 Extraction of WSJ by Cropping WS Out of I;32
5.3.6;3.6 The Loop NextJ;32
5.3.7;3.7 Group Rectangle;33
5.4;4 Results of Experiment and Discussion;33
5.5;5 Conclusions;37
5.6;References;38
6;Präventiv Denken und Handeln für nachhaltige Beschäftigungsfähigkeit;39
6.1;1 Einleitung: Tagungssession ,,Präventiv Denken und Handeln für nachhaltige Beschäftigungsfähigkeit``;39
6.2;2 Theoretischer Input: Nachhaltige Beschäftigungsfähigkeit in der flexiblen Arbeitswelt;41
6.3;3 Herausforderungen präventiven Denkens und Handelns;43
6.4;4 Gestaltungsaufgaben;44
6.5;5 Forschungsbedarfe und Ausblick;45
6.6;Literaturverzeichnis;46
7;Digitalisierung der Arbeit und demografischer Wandel;47
7.1;1 Was ist unter Digitalisierung der Arbeitswelt (Industrie 4.0) zu verstehen?;47
7.2;2 Handlungsfelder für die Arbeitsforschung;50
7.3;3 Neue Forschungsfragen;51
7.3.1;3.1 Gestaltung von Digitalisierung;52
7.3.2;3.2 Forschungsbedarfe zugrundlegenden neuen Auswirkungen der Digitalisierung der Arbeit;56
7.4;4 Fazit;58
7.5;Literaturverzeichnis;58
8;Ergebnistransfer nachhaltig gestalten -- Eine strukturelle Übersicht;59
8.1;1 Einführung;60
8.2;2 Potentiale und Herausforderungen;61
8.3;3 Transferstrukturen Transparent;62
8.3.1;3.1 Die Transferstrukturen der Politik;64
8.3.2;3.2 Die Transferstrukturen von Sozialversicherungen und Kammern;65
8.3.3;3.3 Die Transferstrukturen der Sozialpartner;66
8.3.4;3.4 Die Transferstrukturen von Fachverbänden;67
8.3.5;3.5 Die Transferstrukturen von nationalen Initiativen und Netzwerken;68
8.4;4 Fazit;70
8.5;Literaturverzeichnis;71
9;Neue Kooperationsformen und Regionale Identitäten;72
9.1;1 Einführung;72
9.2;2 Grundproblematik;73
9.3;3 Herausforderungen und Anknüpfpunkte;74
9.4;4 Gestaltungsaufgaben;74
9.5;5 Forschungsfrage;75
9.5.1;5.1 Dissonante Netzwerke erforschen;75
9.5.2;5.2 Netzwerksteuerung als Innovationsmotor und Identitätsmanagement;76
9.5.3;5.3 (Über-)regionales Netzwerklernen anstoßen;76
9.6;6 Fazit und Ausblick;77
9.7;Literaturverzeichnis;77
10;Menschen entwickeln Potenzial für neue Technologien -- 30 Jahre Industriegeschichte;79
10.1;1 Einführung;79
10.2;2 Wissensmanagement;81
10.3;3 Das vollautomatische Auto;82
10.4;4 Energiewende;82
10.5;5 Ausblick;83
10.6;Literaturverzeichnis;84
11;Genderation BeSt -- Investigation of Gender Neutral and Gender Sensitive Academic Recruiting Strategies;85
11.1;1 Background and State of the Art;86
11.2;2 Methods and Design of the Study;89
11.3;3 Investigation of Gender Sensitive and Gender Neutral Academic Recruiting Strategies;90
11.3.1;3.1 Preliminary Study;90
11.3.2;3.2 Main Study;91
11.4;4 Investigation of Gender Sensitivity of the Postings by German Public Research Funding Organizations and Job Postings;92
11.4.1;4.1 Problem-focused Interviews;92
11.5;5 Results;93
11.5.1;5.1 Structural and Cultural Barriers;93
11.5.2;5.2 Cultural Chances and Barriers;93
11.6;6 Recommendations for Gender Neutral and Gender Sensitive Academic Recruiting Strategies;94
11.6.1;6.1 Under-representation of Women in the Appointment Committees;94
11.6.2;6.2 Comparability of the Reviewers' Report;95
11.6.3;6.3 Mechanisms of Discrimination at the Receipt of Applications;96
11.6.4;6.4 Structural Insecurity in the Position of Equality Officers;96
11.6.5;6.5 Selection Process within the Professorial Appointment Committee;97
11.6.6;6.6 Call for Applications;97
11.6.7;6.7 Structural Dependencies and Insecurities of Appointment Commissioners;97
11.6.8;6.8 Voting with the Appointment Committee;98
11.6.9;6.9 Sensitization on Gender Aspects of Structural Commissions;98
11.7;7 Summary;99
11.8;References;100
12;Integrative Knowledge Management in Interdisciplinary Research Clusters;103
12.1;1 Introduction;103
12.2;2 The Need of Integrative Knowledge Management in Interdisciplinary Research Clusters;105
12.2.1;2.1 Choice of Research Field and Organizational Structure;105
12.2.2;2.2 Research Gap and Research Design;106
12.2.3;2.3 Results for Integrative Knowledge Management;107
12.3;3 Supporting Integrative Knowledge Management by Technical Means;109
12.3.1;3.1 Extraction of Terminologies;109
12.3.2;3.2 Mapping of Entities;110
12.3.3;3.3 Visual Data Analysis;110
12.4;4 Experiences and Outlook;112
12.5;References;113
13;Futures Studies Methods for Knowledge Management in Academic Research;115
13.1;1 Introduction;115
13.2;2 New Challenges for Knowledge Management in Academic Research;116
13.3;3 The Impact of the Building Blocks Knowledge Goals and Knowledge Identification on the Generation of Academic Knowledge;117
13.4;4 Considering a Stronger Integration of Futures Studies in Knowledge Management;118
13.4.1;4.1 Futures Studies and Its Methods: Why and Wherefore?;118
13.4.2;4.2 Futures Studies Methods and Their Value for Knowledge Management;119
13.5;5 Conclusion;121
13.6;References;122
14;Neue Formen der Arbeit und die neuen Erwerbsbiografien;124
14.1;1 Einführung;124
14.2;2 Ein kurzer Rückblick;126
14.3;3 Fazit/Ausblick;128
14.4;Literaturverzeichnis;128
15;Managing Interdisciplinary Research Clusters;130
15.1;1 Introduction;130
15.2;2 Cluster Performance Management;132
15.3;3 Implemented Measures;133
15.3.1;3.1 Measures for Managing Interdisciplinary Clusters;133
15.3.2;3.2 Colloquia of Employees;134
15.4;4 Effects of Management;135
15.5;5 Discussion;137
15.6;6 Conclusion and Outlook;137
15.7;References;138
16;Ein kybernetisches Modell beschaffungsinduzierter Störgrößen;141
16.1;1 Einleitung;142
16.2;2 Informationsmanagement;143
16.3;3 Implikationen für die Lieferanten;145
16.4;4 Risikomanagement;148
16.5;5 Kritik an den bestehenden Techniken und Modellen zur Risikobewertung;153
16.6;6 Das kybernetische Simulationsmodell zur Risikobewertung;155
16.7;7 Fazit & Ausblick;159
16.8;Literaturverzeichnis;160
17;Measuring the Quality of Cooperation in Interdisciplinary Research Clusters;164
17.1;1 Introduction;164
17.2;2 Challenges of Interdisciplinary Research;165
17.3;3 Current Measurement Approaches;166
17.3.1;3.1 State of the Art;166
17.3.2;3.2 Questioning CoE in Germany;167
17.3.3;3.3 Conclusion;167
17.4;4 New Communication Shaping Approach;168
17.4.1;4.1 Adaption of a Prototypical Measurement Instrument in Order to Deal with Communications Within CoE;168
17.4.2;4.2 Cluster-specific Communication Indicators;169
17.4.3;4.3 Validating Communication Indicators;169
17.4.4;4.4 Measures and Immediate Back Coupling;171
17.5;5 Conclusion and Outlook;172
17.6;References;173
18;Research Performance and Evaluation -- Empirical Results from Collaborative Research Centers and Clusters of Excellence in Germany;175
18.1;1 Introduction;175
18.2;2 Research Performance and Evaluation in Europe;176
18.3;3 Forms of Public Funded Scientific Collaboration in Germany;177
18.4;4 About a Changing Understanding of Performance Measurement;179
18.5;5 Design of the Empirical Study;180
18.6;6 Results;181
18.6.1;6.1 Selected Results Concerning Participants and Response Proportion;181
18.6.2;6.2 Selected Results Concerning the Importance of Performance Measurement and KPIs in the Context of CRC and CoE;182
18.6.3;6.3 Selected Results Concerning the Impact of CRC and CoE on the Promotion of the Research Location Germany;187
18.6.4;6.4 Selected Results Concerning Frequency and Methodology Used in the Context of Performance Measurement in CRC and CoE;188
18.7;7 Discussion of Methodological Approach;190
18.8;8 Concluding Remarks and Outlook;191
18.9;References;193
19;Shaping the Future Through Cybernetic Approaches of Social Media Monitoring;195
19.1;1 Introduction and Problem Statement;196
19.2;2 Social Media, Monitoring and Cybernetics;197
19.2.1;2.1 Social Media;197
19.2.2;2.2 Social Media Monitoring;198
19.2.3;2.3 Cybernetics and System Theory;199
19.3;3 Cybernetic Approaches of Social Media Monitoring;201
19.4;4 Summary and Outlook;206
19.5;References;206
20;Unterstützung interdisziplinärer integration am Beispiel einer Exzellenzcluster-Community;208
20.1;1 Herausforderungen und Motivation;208
20.2;2 Balanced scorecard basierte Evaluation als Analyseinstrument zur Bedarfsermittlung;209
20.3;3 Exemplarische Maßnahmen zur Community Unterstützung;210
20.3.1;3.1 Physische Community-Veranstaltungen;211
20.3.2;3.2 Virtuelle Communityplattform;211
20.3.3;3.3 Terminologie-Analyse;212
20.3.4;3.4 Bibliometrische Analyse;213
20.4;4 Zusammenfassung und Ausblick;214
20.5;Literaturverzeichnis;215
21;Enhancing Scientific Cooperation of an Interdisciplinary Cluster of Excellence via a Scientific Cooperation Portal;217
21.1;1 Introduction;218
21.2;2 The Scientific Cooperation Portal;219
21.2.1;2.1 Technology;220
21.2.2;2.2 Basic Features;221
21.3;3 Research Applications of the Portal;221
21.3.1;3.1 Terminologies;221
21.3.2;3.2 Publications;223
21.3.3;3.3 Technologies;224
21.3.4;3.4 Project Management;225
21.3.5;3.5 Data Gathering;227
21.4;4 Experiences and Outlook;227
21.5;References;229
22;Scientific Cooperation Engineering Making Interdisciplinary Knowledge Available Within Research Facilities and to External Stakeholders;230
22.1;1 Introduction;231
22.1.1;1.1 Related Work;231
22.2;2 Research Questions;232
22.3;3 The Scenario -- The Aachen Cluster of Excellence;232
22.3.1;3.1 Managing Collaboration;234
22.4;4 The Scientific Cooperation Portal;235
22.4.1;4.1 User Profiles;235
22.4.2;4.2 Terminologies;235
22.4.3;4.3 Publication Relationship Analysis;235
22.4.4;4.4 Technology Transfer;236
22.5;5 Methodology -- Assessing Method Competencies;237
22.6;6 Results and Interpretation;238
22.7;7 Conclusion;239
22.7.1;7.1 Limitations;239
22.8;8 Summary and Outlook;240
22.9;References;241
23;Next-Generation Teaching and Learning Concepts for Universities and the Economy;243
24;Sentiment Analysis of Social Media for Evaluating Universities;244
24.1;1 Introduction;244
24.2;2 Related Work;245
24.2.1;2.1 Social Media at Universities;246
24.2.2;2.2 Evaluating Universities via University Rankings;247
24.2.3;2.3 Sentiment Analysis;248
24.3;3 Twitter Sentiment Analysis for Evaluating Universities in Germany;249
24.3.1;3.1 Data Collection;249
24.3.2;3.2 Defining Tweets Sentiment;250
24.3.3;3.3 Tweets Sentiment Analysis Challenges;251
24.4;4 Data Processing;251
24.4.1;4.1 Tweets Text Filtering;252
24.4.2;4.2 Features Selection and Extraction;253
24.4.3;4.3 Sentiment Classification;254
24.5;5 Results and Discussion;255
24.5.1;5.1 Classifier Efficiency;256
24.5.2;5.2 Tweets Sentiment for Universities Comparison;257
24.5.3;5.3 Daily Scale Tweets Sentiment;258
24.6;6 Conclusion and Outlook;261
24.7;References;261
25;Bridging the Gap Between Students and Laboratory Experiments;263
25.1;1 Introduction;263
25.2;2 State of the Art;266
25.3;3 The Virtual Theatre -- Enabling Virtual Reality in Action;268
25.4;4 Development of Remote Laboratories in the Virtual Theatre;270
25.5;5 Evaluation;272
25.6;6 Conclusion and Outlook;273
25.7;References;274
26;Enhancing the Learning Success of Engineering Students by Virtual Experiments;276
26.1;1 Introduction;276
26.2;2 State of the Art;278
26.3;3 Active Interaction for Remote Labs in Virtual Reality Environments;279
26.4;4 User Studies for Examination and Evaluation of Control Mechanisms for Remote Labs;282
26.4.1;4.1 Design of Experiment and Expectations;282
26.4.2;4.2 Correlational Approach;284
26.5;5 Conclusion and Outlook;286
26.6;References;287
27;Next-Generation Teaching and Learning Using the Virtual Theatre;289
27.1;1 Introduction;290
27.2;2 State of the Art;291
27.3;3 Next-Generation Teaching and Learning Using the Virtual Theatre;292
27.4;4 The Walk on Mars -- An Experiential Learning Scenario;295
27.5;5 Conclusion and Outlook;297
27.6;References;298
28;Shifting Virtual Reality Education to the Next Level -- Experiencing Remote Laboratories Through Mixed Reality;300
28.1;1 Introduction;300
28.2;2 State of the Art;302
28.3;3 The Virtual Theatre -- Enabler for Extended Immersion;305
28.4;4 Enabling Remote Laboratories Through Mixed Reality;307
28.5;5 Evaluation of the Technical Implementation and Impact on the Students Learning Behavior;310
28.6;6 Conclusion and Outlook;312
28.7;References;312
29;Pump it up! -- An Online Game in the Lecture ``Computer Science in Mechanical Engineering'';315
29.1;1 Introduction;315
29.2;2 Didactical Approach: Game-Based Learning;316
29.3;3 Development of the Online Game ``Pump it up!'';317
29.3.1;3.1 Storyline;318
29.3.2;3.2 Technical Implementation;319
29.4;4 Outlook;319
29.5;References;320
30;Pump it up! -- Conception of a Serious Game Applying in Computer Science;322
30.1;1 Introduction;322
30.2;2 Related Work;323
30.3;3 Conception of the Online Game Pump it up!;324
30.3.1;3.1 Didactical Concept: Game-Based Learning Approach;324
30.3.2;3.2 Game Design and Content of Pump it up!;325
30.4;4 Conclusion and Outlook;326
30.5;References;327
31;Flipped Classroom on Top -- Excellent Teaching Through a Method-Mix;329
31.1;1 Excellent Teaching Through a Method-Mix -- Introduction;330
31.2;2 The Object of Application: The Course ``Kommunikation und Organisationsentwicklung'' (KOE);331
31.2.1;2.1 Medial Documentation;332
31.2.2;2.2 Practical Examples;332
31.2.3;2.3 Interactivity and Participation;332
31.2.4;2.4 Exchange- and Data-Platform;333
31.2.5;2.5 Laboratory Tutorial;334
31.2.6;2.6 Online Examination System;334
31.3;3 Flipped Classroom on Top;335
31.3.1;3.1 What Is the Flipped Classroom Approach;335
31.3.2;3.2 Benefits of the Flipped Classroom Approach;335
31.3.3;3.3 The Implementation of Flipped Classroom in KOE;336
31.4;4 Results of the KOE-Discussion-Forum Evaluation;339
31.5;5 Conclusion and Prospects: What Will Come Next?;340
31.6;References;341
32;Integrating Blended Learning -- On the Way to an Excellent Didactical Method-Mix for Engineering Education;343
32.1;1 Introduction;344
32.2;2 The Lecture KOE;345
32.3;3 Cube Model by Baumgartner and Payr and Its Application;346
32.3.1;3.1 The Cube Model by Baumgartner and Payr;346
32.3.2;3.2 Application of the Cube Model;348
32.4;4 The Elements of the Didactical Concept of the Lecture KOE in Detail;348
32.4.1;4.1 Theoretical Inputs;348
32.4.2;4.2 Laboratory Tutorial;349
32.4.3;4.3 Online Examination System;349
32.4.4;4.4 Exchange and Data-Platform;350
32.4.5;4.5 Practical Examples and Guest Lecturers;350
32.4.6;4.6 Interactivity and Participation;351
32.4.7;4.7 Online Lecture and Medial Documentation;352
32.4.8;4.8 Discussion Forum;352
32.5;5 Results of the KOE Evaluation;352
32.6;6 Conclusion and Prospects: What Will Come Next?;353
32.7;References;354
33;Next Level Blended Learning for an Excellent Engineering Education;357
33.1;1 Introduction: The Lecture KOE;358
33.1.1;1.1 Theoretical Inputs;358
33.1.2;1.2 Laboratory Tutorials (Now ROBOFLEX);359
33.1.3;1.3 Online Examination System;359
33.1.4;1.4 Exchange- and Data-Platform (Document Based);360
33.1.5;1.5 Practical Examples (By Guest Lecturers);360
33.1.6;1.6 Interactivity and Participation;360
33.1.7;1.7 Online Lecture;361
33.1.8;1.8 Discussion Forum;361
33.2;2 Implementing the Cube Model by Baumgartner and Payr;361
33.2.1;2.1 Short Summary: The Cube Model by Baumgartner and Payr;361
33.2.2;2.2 Current Status of the Cube's Application;362
33.3;3 The KOE Tutorial Class ROBOFLEX;363
33.4;4 Selected Results of the KOE Evaluation;364
33.5;5 Conclusion and Scope for the Further Development;366
33.6;References;367
34;Are Virtual Learning Environments Appropriate for Dyscalculic Students?;369
34.1;1 Introduction;369
34.2;2 What Is Dyscalculia;371
34.3;3 Provisions for Dyscalculics in German Academic Education;371
34.4;4 Learning Requirements of Dyscalculic Students: An Overview;372
34.5;5 Dyscalculic, Adaptive Learning Through Gamification: An Example;372
34.6;6 In-Between Summary: What Must Be Kept in Mind;374
34.7;7 Relevance, Assumption and Limits;375
34.8;8 Hardware Description: The Virtual Theatre -- a Mixed-Reality Simulator;375
34.9;9 Analysis: The `Virtual Theatre' Scenarios `Mars', `Maze' & `Gallery';377
34.10;10 Potentials for Dyscalculus;383
34.11;11 Conclusion;384
34.12;References;385
35;Blended Learning and Beyond -- Schlüsselfaktoren für Blended Learning am Beispiel der RWTH Aachen;387
35.1;1 Einführung;388
35.2;2 Fundament und Entwicklung der KOE;391
35.3;3 Kritische Reflektion des Status Quo und was folgt;393
35.4;4 Zusammenfassung;395
35.5;Literaturverzeichnis;396
36;Investigating Mixed-Reality Teaching and Learning Environments for Future Demands: The Trainers' Perspective;397
36.1;1 Introduction;398
36.2;2 Setup and Virtual Environment;399
36.3;3 Method;401
36.3.1;3.1 Participants;401
36.3.2;3.2 Assessment of Participants' Objective Behaviour;401
36.3.3;3.3 Semi-structured Interview;402
36.3.4;3.4 Procedure;402
36.4;4 Analysis;404
36.5;5 Results;404
36.6;6 Conclusion and Outlook;406
36.7;References;408
37;New Perspectives for Engineering Education -- About the Potential of Mixed Reality for Learning and Teaching Processes;410
37.1;1 Introduction -- New Perspectives for Engineering Education Through Mixed Reality;411
37.2;2 Experimental Analysis of the Potential of Mixed Reality for Learning and Teaching Processes;412
37.2.1;2.1 Study Design -- Focusing on Spatial Abilities;412
37.2.2;2.2 Variables and Measurements;414
37.2.3;2.3 Sample and Results;415
37.3;3 Discussion;417
37.4;References;419
38;Preparing for Industry 4.0 -- Collaborative Virtual Learning Environments in Engineering Education;420
38.1;1 Introduction: Today's Learning and Working in Preparation for Industry 4.0;421
38.2;2 Collaborative Learning in Virtual Environments;422
38.3;3 Experimental Setting for the Analysis of Collaboration in Virtual Environments;423
38.3.1;3.1 Lead User Workshops with Future Engineers;423
38.3.2;3.2 Work in Progress: Study on Collaboration in Virtual Environments;425
38.4;4 Conclusion;428
38.5;References;429
39;Status Quo of Media Usage and Mobile Learning in Engineering Education;431
39.1;1 Introduction;432
39.2;2 Methodology and Description of the Sample;434
39.3;3 Results;435
39.3.1;3.1 General Media Usage of Students;435
39.3.2;3.2 Mobile Learning;438
39.4;4 Conclusion;440
39.5;References;442
40;A Web-Based Recommendation System for Engineering Education E-Learning Solutions;444
40.1;1 Introduction;445
40.2;2 E-Learning Scheme;446
40.3;3 Determining Solutions' Data;448
40.4;4 Visual User-Flow Language;450
40.5;5 Results;451
40.6;6 Conclusion & Outlook;452
40.7;References;453
41;Access All Areas: Designing a Hands-On Robotics Course for Visually Impaired High School Students;455
41.1;1 Introduction;455
41.2;2 Original Course Design: ``Roborescue'' and ``Rattlesnake'';456
41.3;3 Enabling Higher Accessibility for Visually Impaired Students;457
41.3.1;3.1 Expert Design Workshops;457
41.3.2;3.2 Technical Requirements;457
41.3.3;3.3 Didactical Adjustments;458
41.4;4 Conclusion and Outlook;460
41.5;References;460
42;Please Vote Now! Evaluation of Audience Response Systems -- First Results from a Flipped Classroom Setting;462
42.1;1 Introduction;463
42.2;2 Lecture ``Communication and Organization Development'' (``KOE'');463
42.2.1;2.1 Content and Genesis;463
42.2.2;2.2 Current Setting of the KOE Lecture;465
42.3;3 Survey Instrument and Methodology;467
42.4;4 Results;468
42.4.1;4.1 Survey Results;468
42.4.2;4.2 Flipped Classroom Versus Traditional Lecture;470
42.5;5 Discussion and Further Research Fields;472
42.6;References;473
43;Cognitive IT-Supported Processes for Heterogeneous and Cooperative Systems;475
44;Efficient Collision Avoidance for Industrial Manipulators with Overlapping Workspaces;476
44.1;1 Introduction;476
44.2;2 State of the Art;477
44.3;3 Collision Avoidance;478
44.3.1;3.1 Maximum Velocity Calculation;480
44.3.2;3.2 Minimum Distance Calculation;480
44.3.3;3.3 Identifying Test Configuration;481
44.3.4;3.4 Numerical Effects;483
44.3.5;3.5 Relevant Test Candidates;484
44.4;4 Evaluation;484
44.5;5 Summary;485
44.6;6 Outlook;485
44.7;References;485
45;Auf dem Weg zu einer ,,neuen KI``: Verteilte intelligente Systeme;487
45.1;1 Abstract;487
45.2;2 Cyber Physical Systems und das Internet of Things;488
45.3;3 Analogie zur menschlichen Intelligenz;488
45.4;4 Neuartigkeit verteilter Intelligenz?;489
45.5;5 Das Neue: Globale und variable Entitäten;489
45.6;6 Embodiment-Theorie: Keine Intelligenz ohne Körper;490
45.7;7 Intelligenzkonzepte;491
45.8;8 Aufbruch in eine neue Robotik;492
45.9;9 Roboterteams mit dezentraler Intelligenz;493
45.10;10 Vernetzte Roboter erobern den Alltag;494
45.11;Literaturverzeichnis;496
46;A Causal Foundation for Consciousness in Biological and Artificial Agents;497
46.1;1 Introduction;497
46.2;2 Materials and Methods;500
46.2.1;2.1 The Approach;501
46.2.2;2.2 Theoretical Advantages;507
46.3;3 Results and Discussions;509
46.3.1;3.1 Tentative Guidelines for a Conscious Artificial Architecture;510
46.3.2;3.2 Not Reinventing the Wheel: Combining Multi Agent Systems and Genetic Algorithms;512
46.4;4 Conclusions;514
46.5;References;516
47;From the Perspective of Artificial Intelligence: A New Approach to the Nature of Consciousness;521
47.1;1 Introduction;521
47.2;2 Towards a New Conceptualization of Consciousness;524
47.2.1;2.1 The Approach;524
47.2.2;2.2 The Consequences Overall;529
47.3;3 Consciousness Opening New Perspectives for Artificial Intelligence;532
47.3.1;3.1 From Machine Intelligence to Machine Consciousness;532
47.3.2;3.2 Weak Versus Strong Machine Consciousness;533
47.4;4 Concepts for Building a Conscious Machine;534
47.4.1;4.1 Preparations for a Tentative Architecture for a Conscious Agent;535
47.4.2;4.2 Objectives and Motivations of the Architecture;536
47.4.3;4.3 Combining Multi Agent Systems with Genetic Algorithms;537
47.4.4;4.4 The Practical Side;539
47.5;5 Summary and Outlook;541
47.6;References;541
48;TIDAQL: A Query Language Enabling On-line Analytical Processing of Time Interval Data;545
48.1;1 Introduction;545
48.2;2 Related Work;548
48.3;3 The Tida Query Language;551
48.3.1;3.1 Requirements;551
48.3.2;3.2 Data Control Language;553
48.3.3;3.3 Data Definition Language;554
48.3.4;3.4 Data Manipulation Language;558
48.4;4 Implementation Issues;564
48.4.1;4.1 SELECT TIMESERIES Processing;564
48.4.2;4.2 Performance;566
48.4.3;4.3 Considerations;567
48.5;5 Conclusion;568
48.6;References;568
49;Decisive Factors for the Success of the Carologistics RoboCup Team in the RoboCup Logistics League 2014;570
49.1;1 Introduction;570
49.2;2 The RoboCup Logistics League;571
49.3;3 The Carologistics Platform;572
49.3.1;3.1 Hardware System;572
49.3.2;3.2 Architecture and Middleware;573
49.3.3;3.3 Functional Software Components;574
49.4;4 High-Level Decision Making and Task Coordination;575
49.4.1;4.1 Behavior Components for the LLSF;576
49.4.2;4.2 Lua-Based Behavior Engine;576
49.4.3;4.3 Incremental Reasoning Agent;577
49.4.4;4.4 Multi-robot Simulation in Gazebo;579
49.5;5 Continued Involvement and Outreach;580
49.5.1;5.1 LLSF Referee Box;580
49.5.2;5.2 Organizational and Didactic Aspects;581
49.5.3;5.3 Research;582
49.6;6 Conclusion;582
49.7;References;583
50;Evaluation of the RoboCup Logistics League and Derived Criteria for Future Competitions;585
50.1;1 Introduction;585
50.2;2 RoboCup Logistics League;586
50.2.1;2.1 The Referee Box;587
50.3;3 Related Work: Competitions and Benchmarks;588
50.4;4 Key Performance Indicators;589
50.4.1;4.1 KPIs Applied in the RoboCup Logistics League;592
50.5;5 Analysis of the RCLL 2013 and 2014;593
50.5.1;5.1 Exemplary Application of KPI to the RoboCup 2014 Finale;593
50.5.2;5.2 Overall Tournament Evaluation;595
50.6;6 Conclusion;596
50.7;References;597
51;RoboCup Logistics League Sponsored by Festo: A Competitive Factory Automation Testbed;599
51.1;1 Introduction;599
51.2;2 CPS and Logistics Challenges;602
51.3;3 Game Rules and Objectives;603
51.4;4 Autonomous Referee Box;606
51.4.1;4.1 The CLIPS Rule-Based Production System;606
51.4.2;4.2 Tasks of Referee Box;607
51.4.3;4.3 Implementation;607
51.5;5 Gradual Advancement of the Logistic Scenarios;608
51.5.1;5.1 Basic Robotic Problems;609
51.5.2;5.2 Mobile Manipulation;609
51.5.3;5.3 Multi-robot Coordination;609
51.5.4;5.4 Logistics Management;609
51.5.5;5.5 Robot Hardware Restrictions;610
51.5.6;5.6 Referee Box Development;610
51.6;6 Conclusion;611
51.7;References;611
52;The Carologistics Approach to Cope with the Increased Complexity and New Challenges of the RoboCup Logistics League 2015;613
52.1;1 Introduction;613
52.1.1;1.1 Game Play Changes 2015;614
52.2;2 The Carologistics Platform;616
52.2.1;2.1 Hardware System;617
52.2.2;2.2 Architecture and Middleware;618
52.3;3 Advances to Functional Software Components;618
52.3.1;3.1 Basic Components;618
52.3.2;3.2 Light Signal Vision;619
52.3.3;3.3 Conveyor Belt Detection;619
52.4;4 High-Level Decision Making and Task Coordination;621
52.4.1;4.1 Lua-Based Behavior Engine;622
52.4.2;4.2 Incremental Reasoning Agent;622
52.4.3;4.3 Multi-robot Simulation in Gazebo;623
52.5;5 League Advancements and Continued Involvement;624
52.5.1;5.1 RCLL Referee Box and MPS Stations;624
52.5.2;5.2 League Evaluation;625
52.5.3;5.3 Public Release of Full Software Stack;626
52.5.4;5.4 Agent-Based Programming for High-Level Control;627
52.6;6 Conclusion;627
52.7;References;628
53;AUDIME: Augmented Disaster Medicine;630
53.1;1 Introduction;630
53.2;2 Approach;631
53.2.1;2.1 Wearable Devices;632
53.2.2;2.2 Information Management;633
53.3;3 First Perceptions;635
53.4;4 Summary and Outlook;636
53.5;References;637
54;Fostering Interdisciplinary Integration in Engineering Management;638
54.1;1 Motivation and Problem Statement;638
54.2;2 Dimensions of Integration;640
54.2.1;2.1 Social/Organizational Dimension;640
54.2.2;2.2 Factual/Technical Dimension;640
54.2.3;2.3 Communicative Dimension;641
54.2.4;2.4 Cognitive/Epistemic Dimension;641
54.3;3 Interdisciplinary Integration Methods;641
54.3.1;3.1 Physical Cross Linkage;642
54.3.2;3.2 Virtual Cross Linkage;643
54.3.3;3.3 Terminology Acquisition;644
54.4;4 How to Measure Interdisciplinary Integration;645
54.5;5 Outlook;646
54.6;References;647
55;Arbeit in der Industrie der Zukunft -- Gestaltung Kooperativer Arbeitssysteme von Mensch und Technik in der Industrie 4.0;649
55.1;1 Digitalisierung als Treiber einer Industrie 4.0 Entwicklung;650
55.2;2 Industrie 4.0 -- Technologischer Paradigmenwechsel: dezentrale statt zentrale Steuerung;650
55.3;3 Übergeordnete Ziele von Arbeit in der Industrie der Zukunft;651
55.4;4 Ausblick;653
55.5;Literaturverzeichnis;653
56;Target Group-Adapted User Models for Innovation and Technology Development Processes;655
57;Development of a Questionnaire for the Screening of Communication Processes in Transdisciplinary Research Alliances;656
57.1;1 Introduction;656
57.2;2 Communication in Transdisciplinary Research Alliances;657
57.2.1;2.1 Questionnaire Development Based on Guiding Principles for the Evaluation of Communication Processes;658
57.2.2;2.2 First Application of the Process Screening Questionnaire;659
57.3;3 Method;661
57.4;4 Results;662
57.5;5 Discussion;663
57.6;6 Conclusion;664
57.7;References;666
58;AutoHD -- Automated Handling and Draping of Reinforcing Textiles;668
58.1;1 Introduction;669
58.2;2 Preform Processes;670
58.2.1;2.1 Draping of Fiber-Reinforced Plastics;670
58.2.2;2.2 Handling in Textile Preform Processes;671
58.2.3;2.3 Process Monitoring by Means of Sensor Systems;671
58.3;3 Handling Devices in Textile Preform Processes;671
58.4;4 Objective and Innovative Contribution;673
58.5;References;675
59;New Intermodal Loading Units in the European Transport Market;677
59.1;1 Introduction;677
59.2;2 Overview of the European Intermodal Transport;678
59.3;3 TelliSys Project;679
59.4;4 Requirements of a New Intermodal Loading Unit;680
59.5;5 TelliSys Designs;681
59.6;6 Comparison Between Intermodal Loading Units;683
59.6.1;6.1 Comparison of Technical Characteristics;683
59.6.2;6.2 Comparison of Usage of Different Loading Units;683
59.6.3;6.3 Comparison of Economic Costs and Benefits;684
59.7;7 Conclusion;685
59.8;References;686
60;In-Line Quality Control System for the Industrial Production of Multiaxial Non-crimp Fabrics;688
60.1;1 Introduction;689
60.2;2 Machine Modifications;691
60.3;3 Methods;693
60.4;4 Results;693
60.5;5 Conclusion;695
60.6;References;695
61;Exploring Demographics -- Transdisziplinäre Perspektiven zur Innovationsfähigkeit im demografischen Wandel;697
61.1;1 Innovationsfähigkeit im Kontext des demografischen Wandels;697
61.2;2 Transdisziplinarität -- vom Forschen für die Praxis zum Forschen mit der Praxis;699
61.3;3 Transdisziplinäre Perspektiven im Förderschwerpunkt: Aufbau und Ziele des Sammelbandes;701
61.4;Literaturverzeichnis;705
62;Gestaltung von Kommunikations- und Kooperationsprozessen im Förderschwerpunkt ,,Innovationsfähigkeit im demografischen Wandel``;707
62.1;1 Einleitung;707
62.2;2 Einordung des Förderschwerpunktes in den förderstrukturellen Rahmen;708
62.2.1;2.1 FuE-Programm A-L-K als lernendes System;708
62.2.2;2.2 Struktur des FuE-Programms A-L-K;709
62.3;3 Weiterentwicklung des lernenden Programms am Bespiel des Förderschwerpunktes ,,Innovationsfähigkeit im demografischen Wandel``;712
62.3.1;3.1 Beitrag des Metaprojektes DemoScreen im Förderschwerpunkt;712
62.3.2;3.2 Konkretisierung und Aufgabenbeschreibung von Rekursionsebenen und strukturellen Elementen;714
62.4;4 Fazit;716
62.5;Literaturverzeichnis;717
63;New Challenges in Innovation-Process-Management. A Criticism and Expansion of Unidirectional Innovation-Process-Models;718
63.1;1 Introduction and Problem Statement;718
63.2;2 Unidirectional Innovation-Process-Models -- A Need for a New Paradigm;719
63.2.1;2.1 A Historical Overview;719
63.2.2;2.2 Closed Versus Open Innovation;720
63.2.3;2.3 Process-Models in the Anglo-Saxon Literature;721
63.3;3 Enriching and Broadening Open Innovation by Implementation of a Cybernetic Innovation-Process-Model;722
63.4;4 Conclusion;724
63.5;References;724
64;Neue und flexible Formen der Kompetenzentwicklung;726
64.1;1 Einführung;727
64.2;2 Kompetenzentwicklung im Kontext des Förderschwerpunktes ,,Innovationsfähigkeit im demografischen Wandel``;728
64.3;3 Workshopergebnisse;730
64.3.1;3.1 Impulsvortrag;730
64.3.2;3.2 Bearbeitung der Handlungsfelder -- Leitfrage 1: Grundproblematik;731
64.3.3;3.3 Bearbeitung der Handlungsfelder -- Leitfrage 2: Herausforderungen und Anknüpfungspunkte;731
64.3.4;3.4 Bearbeitung der Handlungsfelder -- Leitfrage 3: Gestaltungsaufgaben;732
64.3.5;3.5 Bearbeitung der Handlungsfelder -- Leitfrage 4: Forschungsfragen;732
64.3.6;3.6 Überarbeitung des Memorandums auf Grundlage der Workshopergebnisse;733
64.4;4 Fazit;734
64.5;Literaturverzeichnis;734
65;Long Term Examination of the Profitability Estimation Focused on Benefits;735
65.1;1 Introduction;736
65.2;2 State of the Art;736
65.3;3 The PEFB-Method;737
65.4;4 Research Design;741
65.5;5 Cost Aspects;742
65.6;6 Benefit Aspects;742
65.7;7 Discussion of the Results;748
65.8;8 Future Research;751
65.9;References;751
66;Real-Time Machine-Vision-System for an Automated Quality Monitoring in Mass Production of Multiaxial Non-crimp Fabrics;754
66.1;1 Introduction;755
66.2;2 State of the Art;756
66.2.1;2.1 Quality Control in CFRP Production;756
66.2.2;2.2 Optical Systems for Quality Control;757
66.2.3;2.3 Real-Time Conditions for Quality Control Systems;758
66.3;3 Concepts and Methods;759
66.3.1;3.1 Quality Control in CFRP Production;759
66.3.2;3.2 Real-Time Sensor Concept;761
66.3.3;3.3 Pipelining and Optimizing;761
66.3.4;3.4 Evaluation Methods;763
66.4;4 Results;764
66.5;5 Conclusion;765
66.6;References;766
67;Diving In? How Users Experience Virtual Environments Using the Virtual Theatre;768
67.1;1 Introduction;768
67.2;2 Method;770
67.2.1;2.1 Experimental Setting;770
67.2.2;2.2 Measurements;772
67.2.3;2.3 Hardware;773
67.2.4;2.4 Participants;774
67.3;3 Results;775
67.3.1;3.1 Correctional Approach;775
67.3.2;3.2 Comparing Hardware Conditions;776
67.4;4 Discussion;777
67.5;5 Limitations of the Present Study and Future Research;778
67.6;References;779
68;Using Off-the-Shelf Medical Devices for Biomedical Signal Monitoring in a Telemedicine System for Emergency Medical Services;781
68.1;1 Introduction;781
68.2;2 Related Work;783
68.3;3 System Requirements;783
68.4;4 System Design of Integrated Biomedical Signal Monitoring;784
68.4.1;4.1 Mobile Communication Unit;786
68.4.2;4.2 Continuous, Near Real-Time Signal Transmission;787
68.4.3;4.3 Periodic Signal Transmission;787
68.5;5 Evaluation Methods and Results;788
68.5.1;5.1 Continuous, Near Real-Time Signal Monitoring;789
68.5.2;5.2 Usability and System Integration;790
68.6;6 Discussion;791
68.7;7 Conclusion;792
68.8;References;793
69;Semantic Networks and Ontologies for Complex Value Chains and Virtual Environments;795
70;Improving Factory Planning by Analyzing Process Dependencies;796
70.1;1 Introduction;796
70.2;2 Related Work;798
70.3;3 Methods;799
70.3.1;3.1 Condition Based Factory Planning (CBFP);799
70.3.2;3.2 Virtual Production Intelligence (VPI);800
70.4;4 Application Scenario;801
70.5;5 Results;803
70.5.1;5.1 Information Model, Consistency Checking and Analysis;803
70.5.2;5.2 VPI Platform for Factory Planning;805
70.5.3;5.3 KPI for Dependency Evaluation;806
70.6;6 Conclusion and Outlook;807
70.7;References;807
71;Ontologiebasiertes Informationsmanagement für die Fabrikplanung;809
71.1;1 Einleitung;810
71.2;2 Stand der Technik und Forschung;811
71.3;3 Semantische Informationsmodellierung der Virtual Production Intelligence;814
71.3.1;3.1 Anwendungsszenario ``Aachener Fabrikplanungsvorgehen'';814
71.3.2;3.2 Prozess der Informationsmodellierung;815
71.3.3;3.3 Prozess der Informationsintegration;816
71.4;4 Ergebnisse;817
71.5;5 Zusammenfassung und Ausblick;819
71.6;Literaturverzeichnis;820
72;Implementing a Volunteer Notification System into a Scalable, Analytical Realtime Data Processing Environment;822
72.1;1 Introduction;823
72.1.1;1.1 Structure;823
72.1.2;1.2 Volunteer Notification System;823
72.1.3;1.3 The Internet of Things Paradigm;824
72.1.4;1.4 Big Data in the Context of a VNS;824
72.1.5;1.5 Stream Processing;825
72.2;2 State of the Art;825
72.2.1;2.1 Pub/Sub Messaging Systems;825
72.2.2;2.2 The Apache Hadoop Ecosystem;827
72.2.3;2.3 Apache Spark;827
72.2.4;2.4 Data Streaming and Processing;828
72.2.5;2.5 Webinterfaces and API;829
72.3;3 System Architecture;829
72.3.1;3.1 Realtime Data Pipeline;829
72.3.2;3.2 Load Balancing;830
72.3.3;3.3 Ad-Hoc/Online Computation;831
72.3.4;3.4 Batch/Offline Computation;831
72.4;4 Conclusion;832
72.5;References;833
73;Continuous Integration of Field Level Production Data into Top-Level Information Systems Using the OPC Interface Standard;835
73.1;1 Introduction;836
73.2;2 State of the Art;838
73.3;3 Continuous Integration of OPC Classic Components into an OPC-UA Production Network;842
73.4;4 Simulation of an OPC/OPC-UA Production Network;843
73.5;5 Validation and Evaluation of the Integration Process;846
73.6;6 Conclusion and Outlook;847
73.7;References;847
74;Assessment of Risks in Manufacturing Using Discrete-Event Simulation;849
74.1;1 Introduction;850
74.2;2 Background;851
74.2.1;2.1 Risks and Risk Management;852
74.2.2;2.2 Risk;852
74.2.3;2.3 Risk Management;853
74.2.4;2.4 Discrete Event Simulation;854
74.3;3 A Simulation Meta-Model for Factories;854
74.3.1;3.1 Modeling Factory Processes;854
74.3.2;3.2 Process Activation and Supply Chain Policies;855
74.3.3;3.3 Modelling Intrinsic Item Features;856
74.4;4 Performing Queries Over Simulations;857
74.4.1;4.1 Probes for Processes;857
74.4.2;4.2 Probes for Storages;858
74.4.3;4.3 Operators;858
74.5;5 Modelling Risks as Queries;859
74.5.1;5.1 Risks Specific to Suppliers;860
74.5.2;5.2 Risks Specific to Storages;860
74.5.3;5.3 Risks Specific to Processes;861
74.5.4;5.4 System Level Risks;861
74.6;6 Implementation;862
74.6.1;6.1 Global Simulator Architecture;862
74.6.2;6.2 Supporting Risk Identification;862
74.6.3;6.3 Efficient Evaluation of the Queries;863
74.7;7 Benchmarking;865
74.7.1;7.1 Benchmark Models;865
74.7.2;7.2 Expressiveness Analysis;866
74.7.3;7.3 Performance Analysis;868
74.8;8 Related Work;868
74.9;9 Conclusions;869
74.10;References;870
75;A Framework for Semantic Integration and Analysis of Measurement Data in Modern Industrial Machinery;872
75.1;1 Introduction;873
75.2;2 Related Work;874
75.3;3 Real-Time Operating Architecture and Basic Concepts;876
75.3.1;3.1 Framework Architecture;876
75.3.2;3.2 Real-Time Monitoring and Analysis;878
75.4;4 Application in High-Pressure-Die-Casting Scenario;879
75.4.1;4.1 Process and Data Acquisition;879
75.4.2;4.2 Conceptual Application of the Framework;881
75.5;5 Summary and Outlook;881
75.6;References;882
76;Bitmap-Based On-Line Analytical Processing of Time Interval Data;885
76.1;1 Introduction;885
76.2;2 Background: Modeling Time Interval Data;887
76.3;3 Aggregating Facts;888
76.3.1;3.1 Aggregation and Many-To-Many Relationships;889
76.3.2;3.2 Aggregation of Time Interval Data;889
76.3.3;3.3 Two-Step-Aggregation Technique;890
76.4;4 Bitmap-Based OLAP of Time Interval Data;892
76.4.1;4.1 Raw Record Handler: Inserts, Deletes and Updates;893
76.4.2;4.2 Descriptor, TimeAxis and FactDescriptor Index;894
76.4.3;4.3 Bitmap-Based Time Interval Data Selection;895
76.4.4;4.4 Bitmap-Based Aggregation;896
76.5;5 Performance;897
76.6;6 Conclusions and Future Work;898
76.7;References;899
77;Modeling and Processing of Time Interval Data for Data-Driven Decision Support;901
77.1;1 Introduction;901
77.2;2 Time Interval Data;903
77.2.1;2.1 Defition;903
77.2.2;2.2 Data-Driven Decision Support Systems;904
77.2.3;2.3 Requirements;906
77.3;3 Related Work;907
77.4;4 Time Interval Data Analysis Model;908
77.4.1;4.1 Definition;908
77.4.2;4.2 Data Structure;912
77.4.3;4.3 Querying the Data Structure;913
77.4.4;4.4 Calculating Measures;913
77.5;5 Performance;914
77.6;6 Conclusions and Future Work;915
77.7;References;916
78;How Virtual Production Intelligence Can Improve Laser-Cutting Planning Processes;919
78.1;1 Introduction;919
78.2;2 Virtual Production Intelligence: Definition and Objective;922
78.3;3 Virtual Production Intelligence Concepts Applied in the Field of Laser Cutting;923
78.3.1;3.1 The Laser Cutting Process;923
78.3.2;3.2 Exploration of Parameter Domains in Laser Cutting Supported by Virtual Production Intelligence;924
78.4;4 Data Integration and Analysis;927
78.4.1;4.1 Integration Process and the Data Model;927
78.4.2;4.2 Data Analysis: Methods and Tools;930
78.5;5 Summary and Outlook;931
78.6;References;931
79;An Agile Information Processing Framework for High Pressure Die Casting Applications in Modern Manufacturing Systems;934
79.1;1 Introduction;935
79.2;2 Related Work;936
79.3;3 Agile Information Processing Framework for HPDC;940
79.3.1;3.1 Use Case Testing Foundry;940
79.3.2;3.2 Information Framework;941
79.4;4 Data Mining and Annotation Service;942
79.5;5 Conclusion and Outlook;944
79.6;References;945
80;Virtual Production Intelligence -- Process Analysis in the Production Planning Phase;947
80.1;1 Introduction;947
80.2;2 Problem;948
80.3;3 Digital Factory;951
80.4;4 Heterogenity;953
80.5;5 Virtual Production Intelligence;954
80.6;6 Application Domain Laser Cutting;956
80.7;7 Conclusion;958
80.8;References;959
81;Text Mining Analytics as a Method of Benchmarking Interdisciplinary Research Collaboration;961
81.1;1 Introduction: Cluster of Excellence `Tailor-Made Fuels from Biomass' and `Supplementary Cluster Activities' at the `RWTH Aachen University';962
81.2;2 Supplementary Cluster Activities in the Context of Benchmarking;963
81.3;3 Benchmarking and Data Sources;965
81.4;4 Applying Text Mining Analytics;967
81.4.1;4.1 Clustering and Pre-processing Publications;968
81.4.2;4.2 Principal Component Analysis (PCA);970
81.4.3;4.3 K-Means Algorithm;971
81.5;5 Outlook: Clustering, Web Mining and Visualization;972
81.6;References;973
Foreword.- List of Contributors.- Part 1: Agile and Turbulence-Suitable Processes for Knowledge and Technology Intensive Organizations.- Part 2: Next-Generation Teaching and Learning Concepts for Universities and the Economy.- Part 3: Cognitive IT-Supported Processes for Heterogeneous and Cooperative Systems.- Part 4: Target Group-Adapted User Models for Innovation and Technology Development Processes.- Part 5: Semantic Networks and Ontologies for Complex Value Chains and Virtual Environments.




