Kaelbling | Recent Advances in Reinforcement Learning | Buch | 978-1-4419-5160-1 | sack.de

Buch, Englisch, 292 Seiten, Previously published in hardcover, Format (B × H): 170 mm x 244 mm, Gewicht: 515 g

Kaelbling

Recent Advances in Reinforcement Learning


Softcover Nachdruck of the original 1. Auflage 1996
ISBN: 978-1-4419-5160-1
Verlag: Springer US

Buch, Englisch, 292 Seiten, Previously published in hardcover, Format (B × H): 170 mm x 244 mm, Gewicht: 515 g

ISBN: 978-1-4419-5160-1
Verlag: Springer US


addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities.
Reinforcement learning has become a primary paradigm of machine learning. It applies to problems in which an agent (such as a robot, a process controller, or an information-retrieval engine) has to learn how to behave given only information about the success of its current actions. This book is a collection of important papers that address topics including the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques. These papers build on previous work and will form an important resource for students and researchers in the area.
is an edited volume of peer-reviewed original research comprising twelve invited contributions by leading researchers. This research work has also been published as a special issue of (Volume 22, Numbers 1, 2 and 3).
Kaelbling Recent Advances in Reinforcement Learning jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Editorial.- Efficient Reinforcement Learning through Symbiotic Evolution.- Linear Least-Squares Algorithms for Temporal Difference Learning.- Feature-Based Methods for Large Scale Dynamic Programming.- On the Worst-Case Analysis of Temporal-Difference Learning Algorithms.- Reinforcement Learning with Replacing Eligibility Traces.- Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results.- The Loss from Imperfect Value Functions in Expectation-Based and Minimax-Based Tasks.- The Effect of Representation and Knowledge on Goal-Directed Exploration with Reinforcement-Learning Algorithms.- Creating Advice-Taking Reinforcement Learners.- Technical Note.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.