Kanekawa / Ibe / Suga | Dependability in Electronic Systems | E-Book | www.sack.de
E-Book

E-Book, Englisch, 204 Seiten

Kanekawa / Ibe / Suga Dependability in Electronic Systems

Mitigation of Hardware Failures, Soft Errors, and Electro-Magnetic Disturbances
1. Auflage 2010
ISBN: 978-1-4419-6715-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Mitigation of Hardware Failures, Soft Errors, and Electro-Magnetic Disturbances

E-Book, Englisch, 204 Seiten

ISBN: 978-1-4419-6715-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book covers the practical application of dependable electronic systems in real industry, such as space, train control and automotive control systems, and network servers/routers. The impact from intermittent errors caused by environmental radiation (neutrons and alpha particles) and EMI (Electro-Magnetic Interference) are introduced together with their most advanced countermeasures. Power Integration is included as one of the most important bases of dependability in electronic systems. Fundamental technical background is provided, along with practical design examples. Readers will obtain an overall picture of dependability from failure causes to countermeasures for their relevant systems or products, and therefore, will be able to select the best choice for maximum dependability.

Kanekawa / Ibe / Suga Dependability in Electronic Systems jetzt bestellen!

Weitere Infos & Material


1;Preface;5
1.1;Reference;6
2;Acknowledgements;7
3;Contents;9
4;List of Figures;13
5;List of Tables;21
6;List of Acronyms;22
7;1 Introduction;25
7.1;1.1 Trends in Failure Cause and Countermeasure;25
7.2;1.2 Contents and Organization of This Book;27
7.3;1.3 For the Best Result;29
7.4;References;29
8;2 Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques;31
8.1;2.1 Introduction;31
8.1.1;2.1.1 SER in Memory Devices;31
8.1.2;2.1.2 MCU in Memory Devices;32
8.1.3;2.1.3 SET and MNU in Logic Devices;32
8.1.4;2.1.4 Chip/System-Level SER Problem: SER Estimation and Mitigation;33
8.1.5;2.1.5 Scope of This Chapter;33
8.2;2.2 Basic Knowledge on Terrestrial Neutron-Induced Soft-Error in MOSFET Devices;34
8.2.1;2.2.1 Cosmic Rays from the Outer Space;34
8.2.2;2.2.2 Nuclear Spallation Reaction and Charge Collection in CMOSFET Device;35
8.3;2.3 Experimental Techniques to Quantify Soft-Error Rate (SER) and Their Standardization;36
8.3.1;2.3.1 The System to Quantify SER -- SECIS;36
8.3.2;2.3.2 Basic Method in JESD89A;37
8.3.2.1;2.3.2.1 Spallation Neutron Methods;37
8.3.2.2;2.3.2.2 (Quasi-)Mono-Energetic Neutron Test;37
8.3.3;2.3.3 SEE Classification Techniques in Time Domain;39
8.3.4;2.3.4 MCU Classification Techniques in Topological Space Domain;40
8.4;2.4 Evolution of Multi-node Upset Problem;41
8.4.1;2.4.1 MCU Characterization by Accelerator-Based Experiments;41
8.4.1.1;2.4.1.1 DUTs and Neutron Beams;41
8.4.1.2;2.4.1.2 MCU Patterns;42
8.4.1.3;2.4.1.3 Influence of Tap Locations;43
8.4.1.4;2.4.1.4 MCU Category;44
8.4.1.5;2.4.1.5 MCU Code;44
8.4.2;2.4.2 Multi-coupled Bipolar Interaction (MCBI);45
8.5;2.5 Simulation Techniques for Neutron-Induced Soft Error;47
8.5.1;2.5.1 Overall Microscopic Soft-Error Model;47
8.5.2;2.5.2 Nuclear Spallation Reaction Models;48
8.5.3;2.5.3 Charge Deposition Model;48
8.5.4;2.5.4 SRAM Device Model;50
8.5.5;2.5.5 Cell Matrix Model;51
8.5.6;2.5.6 Recycle Simulation Method;52
8.5.7;2.5.7 Validation of SRAM Model;53
8.6;2.6 Prediction for Scaling Effects Down to 22nm Design Rule in SRAMs;53
8.6.1;2.6.1 Roadmap Assumption;53
8.6.2;2.6.2 Results and Discussions;54
8.6.2.1;2.6.2.1 Overall Trends;54
8.6.2.2;2.6.2.2 Charge Deposition Density for Secondary Ions;58
8.6.2.3;2.6.2.3 Total Charge Collected to Storage Node;59
8.6.2.4;2.6.2.4 Failed Bit Map (FBM);60
8.6.2.5;2.6.2.5 Energy Dependency of SEU/MCU Cross-Section;60
8.6.2.6;2.6.2.6 Trends in MCU Ratio;62
8.6.2.7;2.6.2.7 Trends in MCU Multiplicity Distribution;62
8.6.3;2.6.3 Validity of Simulated Results;63
8.7;2.7 SER Estimation in Devices/Components/System;64
8.7.1;2.7.1 Standards for SER Measurement for Memories;64
8.7.2;2.7.2 Revisions Needed for the Standards;64
8.7.3;2.7.3 Quantification of SER in Logic Devices and Related Issues;66
8.8;2.8 An Example of Chip/Board-Level SER Measurement and Architectural Mitigation Techniques;67
8.8.1;2.8.1 SER Test Procedures for Network Components;67
8.8.1.1;2.8.1.1 Full and Partial Board Irradiation Test;67
8.8.1.2;2.8.1.2 Neutron Facility;68
8.8.1.3;2.8.1.3 Architecture of Test Component;69
8.8.1.4;2.8.1.4 Test Procedures;71
8.8.2;2.8.2 Results and Discussions;73
8.8.2.1;2.8.2.1 Test Results;73
8.8.2.2;2.8.2.2 Efficacy of Partial Board Irradiation Test;73
8.8.2.3;2.8.2.3 Correlation Between the Irradiation Test and Field Data;74
8.9;2.9 Hierarchical Mitigation Strategies;75
8.9.1;2.9.1 Basic Three Approaches;75
8.9.2;2.9.2 Design on the Upper Bound (DOUB);76
8.10;2.10 Inter Layer Built-In Reliability (LABIR);80
8.11;2.11 Summary;81
8.12;References;83
9;3 Electromagnetic Compatibility;88
9.1;3.1 Introduction;88
9.2;3.2 Quantitative Estimation of the EMI Radiation Based on the Measured Near-Field Magnetic Distribution;91
9.2.1;3.2.1 Measurement of the Magnetic Field Distribution Near the Circuit Board;91
9.2.2;3.2.2 Calculation of the Electric Current Distribution on the Circuit Board;91
9.2.3;3.2.3 Calculation of the Far-Field Radiated EMI;93
9.3;3.3 Development of a Non-contact Current Distribution Measurement Technique for LSI Packaging on PCBs;94
9.3.1;3.3.1 Electric Current Distribution Detection;94
9.3.1.1;3.3.1.1 Target Specification;94
9.3.1.2;3.3.1.2 Conventional and Proposed Technique for Obtaining Current Distribution;94
9.3.1.3;3.3.1.3 High-Resolution Current Detecting Technique;97
9.3.2;3.3.2 The Current Detection Result and Its Verification;97
9.4;3.4 Reduction Technique of Radiated Emission from Chassis with PCB;98
9.4.1;3.4.1 Far-Field Measurement of Chassis with PCB;98
9.4.2;3.4.2 Measurements of Junction Current;102
9.4.3;3.4.3 PSPICE Modeling;103
9.4.4;3.4.4 Experimental Validation;108
9.5;3.5 Chapter Summary;109
9.6;References;111
10;4 Power Integrity;113
10.1;4.1 Introduction;113
10.2;4.2 Detrimental Effect and Technical Trends of Power Integrity Design of Electronic Systems and Devices;114
10.2.1;4.2.1 Detrimental Effect by Power Supply Noise on Semiconducting Devices;114
10.2.1.1;4.2.1.1 Noise Margin Degradation;114
10.2.1.2;4.2.1.2 On-Chip Clock Timing;115
10.2.1.3;4.2.1.3 Signal Timing Uncertainty;116
10.2.1.4;4.2.1.4 Jitter in Single-Ended Signaling;116
10.2.1.5;4.2.1.5 Jitter in Differential Signaling;118
10.2.2;4.2.2 Trends of Power Supply Voltage and Power Supply Current for CMOS Semiconducting Devices;120
10.2.3;4.2.3 Trend of Power Distribution Network Design for Electronic Systems;122
10.3;4.3 Design Methodology of Power Integrity;124
10.3.1;4.3.1 Definition of Power Supply Noise in Electric System;124
10.3.2;4.3.2 Time-Domain and Frequency-Domain Design Methodology;126
10.3.2.1;4.3.2.1 Time-Domain (TD) Analysis;127
10.3.2.2;4.3.2.2 Frequency-Domain Analysis;128
10.3.2.3;4.3.2.3 Target Impedance;129
10.3.2.4;4.3.2.4 Comparison Between TD and FD Analyses;136
10.4;4.4 Modeling and Design Methodologies of PDS;137
10.4.1;4.4.1 Modeling of Electrical Circuit Parameters;138
10.4.1.1;4.4.1.1 Voltage Regulator Module (VRM);138
10.4.1.2;4.4.1.2 Bypass Capacitor;140
10.4.1.3;4.4.1.3 Land of Bypass Capacitor;141
10.4.1.4;4.4.1.4 Power and Ground Planes;142
10.4.1.5;4.4.1.5 VIA;142
10.4.1.6;4.4.1.6 BGA;142
10.4.1.7;4.4.1.7 On-Chip Bypass Capacitors;143
10.4.2;4.4.2 Design Strategies of PDS;143
10.4.2.1;4.4.2.1 Usage of Different Capacitors;145
10.4.2.2;4.4.2.2 Usage of a Capacitor with Large BQF;145
10.4.2.3;4.4.2.3 Usage of a Large ESR;146
10.4.2.4;4.4.2.4 Usage of Multiple Terminal Components;146
10.4.2.5;4.4.2.5 Place Components as Close as Possible;147
10.5;4.5 Simultaneous Switching Noise (SSN);147
10.5.1;4.5.1 Principle of SSN;148
10.5.2;4.5.2 S--G loop SSN;149
10.5.3;4.5.3 P--G loop SSN;151
10.6;4.6 Measurement of Power Distribution System Performance;153
10.6.1;4.6.1 On-Chip Voltage Waveform Measurement;153
10.6.1.1;4.6.1.1 DAC;153
10.6.1.2;4.6.1.2 Ring Oscillator;154
10.6.1.3;4.6.1.3 Delay Observation;157
10.6.2;4.6.2 On-Chip Power Supply Impedance Measurement;159
10.6.2.1;4.6.2.1 Integrated Power Supply Frequency Domain Impedance Meter (IFDIM);159
10.6.2.2;4.6.2.2 Impulse Response Method;160
10.7;4.7 Summary;162
10.8;References;163
11;5 Fault-Tolerant System Technology;165
11.1;5.1 Introduction;165
11.2;5.2 Metrics for Dependability;166
11.2.1;5.2.1 Reliability;166
11.2.2;5.2.2 Availability;167
11.2.3;5.2.3 Safety;169
11.3;5.3 Reliability Paradox;170
11.4;5.4 Survey on Fault-Tolerant Systems;172
11.5;5.5 Technical Issues;175
11.5.1;5.5.1 High Performance;176
11.5.2;5.5.2 Transparency;178
11.5.3;5.5.3 Physical Transparency;178
11.5.4;5.5.4 Fault Tolerance of Fault Tolerance for Ultimate Safety;179
11.5.5;5.5.5 Reliability of Software;182
11.6;5.6 Industrial Approach;183
11.6.1;5.6.1 Autonomous Decentralized Systems;185
11.6.2;5.6.2 Space Application;186
11.6.3;5.6.3 Commercial Fault-Tolerant Systems;186
11.6.4;5.6.4 Ultra-Safe System;187
11.7;5.7 Availability Improvement vs. Coverage Improvement;188
11.8;5.8 Trade-Off Between Availability and Coverage Stepwise Negotiating Voting;188
11.8.1;5.8.1 Basic Concept;188
11.8.2;5.8.2 Hiten Onboard Computer;191
11.8.3;5.8.3 Fault-Tolerance Experiments;192
11.8.3.1;5.8.3.1 Fault-Injection Experiments;192
11.8.3.2;5.8.3.2 Field Data;193
11.8.4;5.8.4 Extension of SNV -- Redundancy Management;195
11.9;5.9 Coverage Improvement;197
11.9.1;5.9.1 Self-Checking Comparator;198
11.9.2;5.9.2 Optimal Time Diversity;201
11.10;5.10 On-Chip Redundancy;206
11.11;5.11 High Performance (Commercial Fault-Tolerant Computer);210
11.11.1;5.11.1 Basic Concepts of TPR Architecture;210
11.11.1.1;5.11.1.1 System Reconfiguration by Collaboration of Hardware and Software;210
11.11.1.2;5.11.1.2 Intra-board Fault-Masking;211
11.11.2;5.11.2 System Configuration;211
11.11.3;5.11.3 System Reconfiguration on Fault Occurrence;213
11.11.4;5.11.4 Processing Take-Over on Fault Occurrence;213
11.11.5;5.11.5 Fault Tolerance of Fault Tolerance;214
11.11.5.1;5.11.5.1 Fault Tolerance of System Reconfiguration;214
11.11.5.2;5.11.5.2 Fault Tolerance of MPU Checker;214
11.11.6;5.11.6 Commercial Product Model;217
11.12;5.12 Current Application Field: X-by-Wire;218
11.13;References;220
12;6 Challenges in the Future;223
12.1;References;224
13;Index;225



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.