Karden / Moseley / Rand | Lead-Acid Batteries for Future Automobiles | Buch | 978-0-444-63700-0 | sack.de

Buch, Englisch, 706 Seiten, Format (B × H): 195 mm x 241 mm, Gewicht: 1622 g

Karden / Moseley / Rand

Lead-Acid Batteries for Future Automobiles


Erscheinungsjahr 2017
ISBN: 978-0-444-63700-0
Verlag: Elsevier Science & Technology

Buch, Englisch, 706 Seiten, Format (B × H): 195 mm x 241 mm, Gewicht: 1622 g

ISBN: 978-0-444-63700-0
Verlag: Elsevier Science & Technology


Lead-Acid Batteries for Future Automobiles provides an overview on the innovations that were recently introduced in automotive lead-acid batteries and other aspects of current research. Innovative concepts are presented, some of which aim to make lead-acid technology a candidate for higher levels of powertrain hybridization, namely 48-volt mild or high-volt full hybrids.

Lead-acid batteries continue to dominate the market as storage devices for automotive starting and power supply systems, but are facing competition from alternative storage technologies and being challenged by new application requirements, particularly related to new electric vehicle functions and powertrain electrification.

Karden / Moseley / Rand Lead-Acid Batteries for Future Automobiles jetzt bestellen!

Zielgruppe


<p>The main audience is the R&D community ie, chemists, chemical engineers who must develop a LAB with high power, lifetime and low cost. The book mainly has a scientific character but it also gives practical guidelines for applications of LABs in hybrid cars, downsizing concepts and standards/tests.</p>

Weitere Infos & Material


About the Editors Patrick T. Moseley, Eckhard Karden, David A. J. Rand and Jürgen Garche Introduction Jürgen Garche Abbreviations, Acronyms, Initialisms Patrick T. Moseley, Eckhard Karden, David A. J. Rand and Jürgen Garche

I Overview 1. Development trends for future automobiles and their demand on the battery Eckhard Karden 2. Overview of batteries for future automobiles Peter Kurzweil and Jürgen Garche 3. Lead-acid battery fundamentals David A. J. Rand and Patrick T. Moseley 4. Current research topics for lead-acid batteries Matthias Kuipers, Dirk Uwe Sauer, Monika Kwiecin and Philipp Schröer

II Battery Technology 5. Flooded SLI and Enhanced Flooded Batteries (EFB): State of the art Manfred Gelbke and Christian Mondoloni 6. Automotive absorbent glass mat (AGM) lead-acid batteries: state-of-the-art Automotive absorbent glass mat (AGM) lead-acid batteries: State of the art Joern Albers and Eberhard Meissner 7. Performance-enhancing materials for lead-acid battery negative plates Patrick T. Moseley, David A. J. Rand and Ken Peters 8. Positive Active Materials for lead-acid battery plates Rainer Wagner 9. Lead current collectors for lead-acid batteries R David Prengaman 10. Alternative current collectors Angel Kirchev 11. Cell design for high-rate operation Norbert Maleschitz 12. Towards sustainable road transport with the UltraBattery Lan Lam, Jun Furukawa, K. Smith and David A. J. Rand

III Application Technology 13. Lead-acid battery operation in micro-hybrid and electrified vehicles Christopher Chumchal and Dennis Kurzweil 14. Monitoring techniques for 12 V lead-acid batteries in automobiles Eberhard Schoch, Joachim Kizler, Clemens Schmucker, Britta Kronenberg, Marcus Bremmer, Jürgen Schöttle, Michel Ruch and Martin Königsmann 15. Dual battery systems for 12-Volt automotive power supply Armin Warm and Matthew Denlinger 16. Basics on lead-acid battery modeling and simulation Moritz Huck, Dirk Uwe Sauer, Julia Badeda, Jan Kabzinski and Jonathan Wirth 17. Lead-acid batteries for heavy trucks Jean Paul Douady, Liao Wang, Jean-François Sarrau, Samia Fouache and Marleen Boucoiran 18. Lead-acid batteries for E-bicycles and E-scooters Jürgen Garche

IV Product Life Cycle 19. Standards and Tests for lead-acid batteries in automotive applications Torsten Hildebrandt, Osada Akira, Shawn Peng and Timothy Moyer 20. Recycling concepts for lead-acid batteries R David Prengaman and Abbas H. Mirza

V Outlook 21. Lead-acid batteries for future automobiles: status and prospects Patrick T. Moseley, Jürgen Garche and David A. J. Rand


Rand, David A. J.
Dr David Rand AM PhD ScD FTSE was educated at the University of Cambridge where he conducted research on fuel cells. In 1969, he joined the Australian Government's CSIRO laboratories in Melbourne. After further exploration of fuel cell mechanisms and then electrochemical studies of mineral beneficiation, David formed the CSIRO Novel Battery Technologies Group in the late 1970s and remained its leader until 2003. He was one of the six scientists who established the Advanced Lead-Acid Battery Consortium in 1992 and served as its Manager in 1994. As a Chief Research Scientist, David fulfilled the role of CSIRO's scientific advisor on hydrogen and renewable energy until his retirement in 2008. He remains active within the organisation as an Honorary Research Fellow, and has served as the Chief Energy Scientist of the World Solar Challenge since its inception in 1987. David was awarded the Faraday Medal by the Royal Society of Chemistry (UK) in 1991 and the UNESCO Gaston Planté Medal by the Bulgarian Academy of Sciences in 1996. He was elected a Fellow of the Australian Academy of Technological Sciences and Engineering in 1998, and became a Member of the Order of Australia in 2013 for service to science and technological development in the field of energy storage.

Moseley, Patrick T.
Pat was awarded a Ph. D. for crystal structure analysis in 1968 by the University of Durham, U.K., and a D. Sc. for research publications in materials science, by the same university, in 1994. He worked for 23 years at the Harwell Laboratory of the U.K. Atomic Energy Authority where he brought a background of crystal structure and materials chemistry to the study of lead-acid and other varieties of battery, thus supplementing the traditional electrochemical emphasis of the subject.
From1995 he was Manager of Electrochemistry at the International Lead Zinc Research Organization in North Carolina and Program Manager of the Advanced Lead-Acid Battery Consortium. In 2005 he also became President of the Consortium.
Dr. Moseley was one of the editors of the Journal of Power Sources for 25 years from 1989 to 2014. In 2008 he was awarded the Gaston Planté medal by the Bulgarian Academy of Sciences.

Karden, Eckhard
Eckhard received his diploma in Physics 1995 and his Ph.D. in Electrical Engineering 2001 from RWTH Aachen University of Technology with projects on CAE modeling and electrochemical impedance spectroscopy of lead-acid batteries. Having spent two and a half year as senior engineer at ISEA Institute for Power Electronics and Electrical Drives of the same university, he joined Ford Motor Company in the newly established Research and Innovation Centre (RIC) Aachen. He has been focusing on batteries for low-voltage power supply, micro, and mild hybrid applications. As a Technical Specialist, he is working closely with Ford's global engineering centres and has been involved in the conceptual work, specifications, and component verification plans for the enhanced flooded batteries, battery sensors, and charging strategies that went into Ford's first generations of micro-hybrid vehicles. He is an active member of German, European, and international standardization working groups for stop/start and micro-hybrid batteries.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.