Karr | Probability | E-Book | www.sack.de
E-Book

E-Book, Englisch, 283 Seiten, eBook

Reihe: Springer Texts in Statistics

Karr Probability


1993
ISBN: 978-1-4612-0891-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 283 Seiten, eBook

Reihe: Springer Texts in Statistics

ISBN: 978-1-4612-0891-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book offers a straightforward introduction to the mathematical theory of probability. It presents the central results and techniques of the subject in a complete and self-contained account. As a result, the emphasis is on giving results in simple forms with clear proofs and to eschew more powerful forms of theorems which require technically involved proofs. Throughout there are a wide variety of exercises to illustrate and to develop ideas in the text.

Karr Probability jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Prelude: Random Walks.- The Model.- Random variables.- Probability.- First calculations.- Issues and Approaches.- Issues.- Approaches.- Tools.- Functional of the Random Walk.- Times of returns to the origin.- Numbers of returns to the origin.- First passage times.- Maxima.- Time spent positive.- Limit Theorems.- Summary.- 1 Probability.- 1.1 Random Experiments and Sample Spaces.- 1.1.1 Random experiments.- 1.1.2 Sample spaces.- 1.2 Events and Classes of Sets.- 1.2.1 Events.- 1.2.2 Basic set operations.- 1.2.3 Indicator functions.- 1.2.4 Operations on sequences of sets.- 1.2.5 Classes of sets closed under set operations.- 1.2.6 Generated classes.- 1.2.7 The monotone class theorem.- 1.2.8 Events, bis.- 1.3 Probabilities and Probability Spaces.- 1.3.1 Probability.- 1.3.2 Elementary properties.- 1.3.3 More advanced properties.- 1.3.4 Almost sure and null events.- 1.3.5 Uniqueness.- 1.4 Probabilities on R.- 1.4.1 Distribution functions.- 1.4.2 Discrete probabilities.- 1.4.3 Absolutely continuous probabilities.- 1.4.4 Mixed distributions.- 1.5 Conditional Probability Given a Set.- 1.6 Complements.- 1.6.1 The extended real numbers.- 1.6.2 Measures.- 1.6.3 Lebesgue measure.- 1.6.4 Singular probabilities on R.- 1.6.5 Representation of probabilities on R.- 1.7 Exercises.- 2 Random Variables.- 2.1 Fundamentals.- 2.1.1 Random variables.- 2.1.2 Random vectors.- 2.1.3 Stochastic processes.- 2.1.4 Complex-valued random variables.- 2.1.5 The -algebra generated by a random variable.- 2.1.6 Simplified criteria.- 2.2 Combining Random Variables.- 2.2.1 Algebraic operations.- 2.2.2 Limiting operations.- 2.2.3 Transformations.- 2.2.4 Approximation of positive random variables.- 2.2.5 Monotone class theorems.- 2.3 Distributions and Distribution Functions.- 2.3.1 Random variables.- 2.3.2 Random vectors.- 2.4 Key Random Variables and Distributions.- 2.4.1 Discrete random variables.- 2.4.2 Absolutely continuous random variables.- 2.4.3 Random vectors.- 2.5 Transformation Theory.- 2.5.1 Random variables.- 2.5.2 Random vectors.- 2.6 Random Variables with Prescribed Distributions.- 2.6.1 Individual random variables.- 2.6.2 Random vectors.- 2.6.3 Sequences of random variables.- 2.7 Complements.- 2.7.1 Measurability with respect to sub-?-algebras.- 2.7.2 Borel measurable functions.- 2.8 Exercises.- 3 Independence.- 3.1 Independent Random Variables.- 3.1.1 Fundamentals.- 3.1.2 Criteria for independence.- 3.1.3 Examples.- 3.2 Functions of Independent Random Variables.- 3.2.1 Transformation properties.- 3.2.2 Sums of independent random variables.- 3.3 Constructing Independent Random Variables.- 3.3.1 Finite families.- 3.3.2 Sequences.- 3.4 Independent Events.- 3.5 Occupancy Models.- 3.5.1 Four occupancy models.- 3.5.2 Occupancy numbers.- 3.5.3 Asymptotics.- 3.6 Bernoulli and Poisson Processes.- 3.6.1 Bernoulli processes.- 3.6.2 Poisson processes.- 3.7 Complements.- 3.7.1 Independent ?-algebras.- 3.7.2 Products of probability spaces.- 3.8 Exercises.- 4 Expectation.- 4.1 Definition and Fundamental Properties.- 4.1.1 Simple random variables.- 4.1.2 Positive random variables.- 4.1.3 Integrable random variables.- 4.1.4 Complex-valued random variables.- 4.2 Integrals with respect to Distribution Functions.- 4.2.1 Generalities.- 4.2.2 Discrete distribution functions.- 4.2.3 Absolutely continuous distribution functions.- 4.2.4 Mixed distribution functions.- 4.3 Computation of Expectations.- 4.3.1 Positive random variables.- 4.3.2 Integrable random variables.- 4.3.3 Functions of random variables.- 4.3.4 Functions of random vectors.- 4.3.5 Functions of independent random variables.- 4.3.6 Sums of independent random variables.- 4.4 LP Spaces and Inequalities.- 4.4.1 LPspaces.- 4.4.2 Key inequalities.- 4.5 Moments.- 4.5.1 Moments of random variables.- 4.5.2 Variance and standard deviation.- 4.5.3 Covariance and correlation.- 4.5.4 Moments of random vectors.- 4.5.5 Multivariate normal distributions.- 4.6 Complements.- 4.6.1 Integration with respect to Lebesgue measure.- 4.6.2 Expectation for product probabilities.- 4.7 Exercises.- 5 Convergence of Sequences of Random Variables.- 5.1 Modes of Convergence.- 5.1.1 Convergence of random variables as functions.- 5.1.2 Convergence of distribution functions.- 5.1.3 Alternative criteria.- 5.2 Relationships Among the Modes.- 5.2.1 Implications always valid.- 5.2.2 Counterexamples.- 5.2.3 Implications of restricted validity.- 5.2.4 Implications involving subsequences.- 5.3 Convergence under Transformations.- 5.3.1 Algebraic operations.- 5.3.2 Continuous mappings.- 5.4 Convergence of Random Vectors.- 5.4.1 Convergence of random vectors as functions.- 5.4.2 Convergence in distribution.- 5.4.3 Continuous mappings.- 5.5 Limit Theorems for Bernoulli Summands.- 5.5.1 Laws of large numbers.- 5.5.2 Central limit theorems.- 5.5.3 The Poisson limit theorem.- 5.5.4 Approximation of continuous functions.- 5.6 Complements.- 5.6.1 LP Convergence of random variables.- 5.7 Exercises.- 6 Characteristic Functions.- 6.1 Definition and Basic Properties.- 6.1.1 Fundamentals.- 6.1.2 Elementary properties.- 6.2 Inversion and Uniqueness Theorems.- 6.2.1 The inversion theorem.- 6.2.2 The uniqueness theorem.- 6.2.3 Specialized inversion theorems.- 6.3 Moments and Taylor Expansions.- 6.3.1 Calculation of moments known to exist.- 6.3.2 Establishing existence of moments.- 6.3.3 Taylor expansions of characteristic functions.- 6.4 Continuity Theorems and Applications.- 6.4.1 Convergence in distribution.- 6.4.2 The Levy continuity theorem.- 6.4.3 Application to classical limit theorems.- 6.5 Other Transforms.- 6.5.1 Characteristic functions of random vectors.- 6.5.2 Laplace transforms.- 6.5.3 Moment generating functions.- 6.5.4 Generating functions.- 6.6 Complements.- 6.6.1 Helly’s theorem.- 6.7 Exercises.- 7 Classical Limit Theorems.- 7.1 Series of Independent Random Variables.- 7.1.1 Kolmogorov’s inequality.- 7.1.2 The three series theorem.- 7.2 The Strong Law of Large Numbers.- 7.3 The Central Limit Theorem.- 7.3.1 The Lyapunov condition.- 7.3.2 The Lindeberg condition.- 7.4 The Law of the Iterated Logarithm.- 7.4.1 Normally distributed summands.- 7.4.2 More general versions.- 7.5 Applications of the Limit Theorems.- 7.5.1 Monte Carlo integration.- 7.5.2 Maximum likelihood estimation.- 7.5.3 Empirical distribution functions.- 7.5.4 Random sums of independent random variables.- 7.5.5 Renewal processes.- 7.6 Complements.- 7.6.1 The Berry-Esseen theorem.- 7.7 Exercises.- 8 Prediction and Conditional Expectation.- 8.1 Prediction in L2.- 8.1.1 The inner product and norm.- 8.1.2 L2 as metric space.- 8.1.3 Orthogonality and orthonormality.- 8.1.4 The orthogonal decomposition theorem.- 8.1.5 Computation of MMSE predictors.- 8.1.6 Linear prediction.- 8.2 Conditional Expectation Given a Finite Set of Random Variables.- 8.2.1 Basics.- 8.2.2 Examples.- 8.2.3 Conditional probability.- 8.3 Conditional Expectation for X?L2.- 8.3.1 Conditional expectation as MMSE prediction.- 8.3.2 Properties of conditional expectation.- 8.4 Positive and Integrable Random Variables.- 8.5 Conditional Distributions.- 8.5.1 Generalities.- 8.5.2 Discrete random variables.- 8.5.3 Absolutely continuous random variables.- 8.6 Computational Techniques.- 8.6.1 General results.- 8.6.2 Special cases.- 8.7 Complements.- 8.7.1 Mixed conditional distributions.- 8.7.2 Conditional expectation given a ?-algebra.- 8.8 Exercises.- 9 Martingales.- 9.1 Fundamentals.- 9.1.1 Definitions.- 9.1.2 Examples.- 9.1.3 Compositions and transformations.- 9.2 Stopping Times.- 9.3 Optional Sampling Theorems.- 9.3.1 Optional sampling theorems for martingales.- 9.3.2 Applications of optional sampling theorems.- 9.4 Martingale Convergence Theorems.- 9.4.1 Upcrossings and almost sure convergence.- 9.4.2 Almost sure convergence of submartingales.- 9.4.3 Almost sure convergence of martingales.- 9.4.4 Uniformly integrable martingales.- 9.5 Applications of Convergence Theorems.- 9.5.1 The Radon-Nikodym theorem.- 9.5.2 Zero-one laws.- 9.5.3 Likelihood ratios.- 9.6 Complements.- 9.6.1 Conditioning on Yo,…,YT.- 9.6.2 Martingales with respect to filtrations.- 9.6.3 Reversed martingales.- 9.7 Exercises.- A Notation.- B Named Objects.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.