Kaswan / Dhatterwal / Baliyan | Kaswan, K: Quantum Computing | Buch | 978-1-394-15781-5 | sack.de

Buch, Englisch, 336 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 551 g

Kaswan / Dhatterwal / Baliyan

Kaswan, K: Quantum Computing

Buch, Englisch, 336 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 551 g

ISBN: 978-1-394-15781-5
Verlag: Wiley


QUANTUM COMPUTING

A helpful introduction to all aspects of quantum computing

Quantum computing is a field combining quantum mechanics--the physical science of nature at the scale of atoms and subatomic particles--and information science. Where ordinary computing uses bits, logical values whose position can either be 0 or 1, quantum computing is built around qubits, a fundamental unit of quantum information which can exist in a superposition of both states. As quantum computers are able to complete certain kinds of functions more accurately and efficiently than computers built on classical binary logic, quantum computing is an emerging frontier which promises to revolutionize information science and its applications.

This book provides a concise, accessible introduction to quantum computing. It begins by introducing the essentials of quantum mechanics that information and computer scientists require, before moving to detailed discussions of quantum computing in theory and practice. As quantum computing becomes an ever-greater part of the global information technology landscape, the knowledge in Quantum Computing will position readers to join a vital and highly marketable field of research and development.

The book's readers will also find:

* Detailed diagrams and illustrations throughout
* A broadly applicable quantum algorithm that improves on the best-known classical algorithms for a wide range of problems
* In-depth discussion of essential topics including key distribution, cluster state quantum computing, superconducting qubits, and more

Quantum Computing is perfect for advanced undergraduate and graduate students in computer science, engineering, mathematics, or the physical sciences, as well as for researchers and academics at the intersection of these fields who want a concise reference.
Kaswan / Dhatterwal / Baliyan Kaswan, K: Quantum Computing jetzt bestellen!

Weitere Infos & Material


Preface xiii

Author Biography xv

1 Introduction of Quantum Computing 1

1.1 Introduction 1

1.2 What Is the Exact Meaning of Quantum Computing? 2

1.2.1 What Is Quantum Computing in Simple Terms? 2

1.3 Origin of Quantum Computing 3

1.4 History of Quantum Computing 5

1.5 Quantum Communication 19

1.6 Build Quantum Computer Structure 19

1.7 Principle Working of Quantum Computers 21

1.7.1 Kinds of Quantum Computing 21

1.8 Quantum Computing Use in Industry 23

1.9 Investors Invest Money in Quantum Technology 24

1.10 Applications of Quantum Computing 26

1.11 Quantum Computing as a Solution Technology 29

1.11.1 Quantum Artificial Intelligence 29

1.11.2 How Close Are We to Quantum Supremacy? 30

1.12 Conclusion 30

References 31

2 Pros and Cons of Quantum Computing 33

2.1 Introduction 33

2.2 Quantum as a Numerical Process 33

2.3 Quantum Complexity 34

2.4 The Pros and Cons of the Quantum Computational Framework 36

2.5 Further Benefits of Quantum Computing 37

2.6 Further Drawbacks to Quantum Computing 38

2.7 Integrating Quantum and Classical Techniques 38

2.8 Framework of QRAM 39

2.9 Computing Algorithms in the Quantum World 40

2.9.1 Programming Quantum Processes 42

2.10 Modification of Quantum Building Blocks 42

References 43

3 Methods and Instrumentation for Quantum Computing 45

3.1 Basic Information of Quantum Computing 45

3.2 Signal Information in Quantum Computing 47

3.3 Quantum Data Entropy 47

3.4 Basics of Probability in Quantum Computing 50

3.5 Quantum Theorem of No-Cloning 52

3.6 Measuring Distance 53

3.7 Fidelity in Quantum Theory 58

3.8 Quantum Entanglement 62

3.9 Information Content and Entropy 66

References 71

4 Foundations of Quantum Computing 73

4.1 Single-Qubit 73

4.1.1 Photon Polarization in Quantum Computing 73

4.2 Multi-qubit 76

4.2.1 Blocks of Quantum States 76

4.2.2 Submission of Vector Space in Quantum Computing 77

4.2.3 Vector Spacing in Quantum Blocks 77

4.2.4 States of n-Qubit Technology 79

4.2.5 States of Entangled 81

4.2.6 Classical Measuring of Multi-Qubit 84

4.3 Measuring of Multi-Qubit 87

4.3.1 Mathematical Functions in Quantum Operations 87

Example 88

4.3.2 Operator Measuring Qubits Projection 89

4.3.3 The Measurement Postulate 94

4.3.4 EPR Paradox and Bell's Theorem 99

4.3.5 Layout of Bell's Theorem 101

4.3.6 Statistical Predicates of Quantum Mechanics 101

4.3.7 Predictions of Bell's Theorem 102

4.3.8 Bell's Inequality 103

4.4 States of Quantum Metamorphosis 105

4.4.1 Solitary Steps Metamorphosis 106

4.4.2 Irrational Metamorphosis: The No-Cloning Principle 107

4.4.3 The Pauli Transformations 109

4.4.4 The Hadamard Metamorphosis 109

4.4.5 Multi-Qubit Metamorphosis from Single-Qubit 109

4.4.6 The Controlled-NOT and Other Singly Controlled Gates 110

4.4.7 Opaque Coding 113

4.4.8 Basic Bits in Opaque Coding 114

4.4.9 Quantum Message Teleportation 114

4.4.10 Designing and Constructing Quantum Circuits 116

4.4.11 Single Qubit Manipulating Quantum State 116

4.4.12 Controlling Single-Qubit Metamorphosis 117

4.4.13 Controlling Multi Single-Qubit Metamorphosis 117

4.4.14 Simple Metamorphosis 119

4.4.15 Unique Setup Gates 121

4.4.16 The Standard Circuit Model 122

References 123

5 Computational Algorithm Design in Quantum Systems 125

5.1 Introduction 125

5.2 Quantum Algorithm 125

5.3 Rule 1 Superposition 126

5.4 Rule 2 Quantum Entanglement 130

5.5 Rule 3 Quantum Metrology 132

5.6 Rule 4 Quantum Gates 133

5.7 Rule 5 Fault-Tolerant Quantum Gates 134

5.8 Quantum Concurrency 138

5.9 Rule 7 Quantum Interference 139

5.10 Rule 8 Quantum Parallelism 141

5.11 Summary 143

References 144

6 Optimization of an Amplification Algorithm 145

6.1 Introduction 145

6.2 The Effect of Availability Bias 146

6.2.1 Optimization of an Amplification Algorithm 147

6.2.2 Specifications of the Mathematical Amplification Algorithm 149

6.3 Quantum Amplitude Estimation and Quantum Counting 149

6.4 An Algorithm for Quantitatively Determining Amplitude 150

6.4.1 Mathematical Description of Amplitude Estimation Algorithm 151

6.5 Counting Quantum Particles: An Algorithm 151

6.5.1 Mathematical Description of Quantum Counting Algorithm 152

6.5.2 Related Algorithms and Techniques 152

References 153

7 Error-Correction Code in Quantum Noise 155

7.1 Introduction 155

7.2 Basic Forms of Error-Correcting Code in Quantum Technologies 156

7.2.1 Single Bit-Flip Errors in Quantum Computing 156

7.2.2 Single-Qubit Coding in Quantum Computing 161

7.2.3 Error-Correcting Code in Quantum Technology 162

7.3 Framework for Quantum Error-Correcting Codes 163

7.3.1 Traditional Based on Error-Correcting Codes 164

7.3.2 Quantum Error Decode Mechanisms 166

7.3.3 Correction Sets in Quantum Coding Error 167

7.3.4 Quantum Errors Detection 168

7.3.5 Basic Knowledge Representation of Error-Correcting Code 170

7.3.6 Quantum Codes as a Tool for Error Detection and Correction 173

7.3.7 Quantum Error Correction Across Multiple Blocks 176

7.3.8 Computing on Encoded Quantum States 177

7.3.9 Using Linear Transformation of Correctable Codes 177

7.3.10 Model of Classical Independent Error 178

7.3.11 Independent Quantum Inaccuracies Models 179

7.4 Coding Standards for CSS 182

7.4.1 Multiple Classical Identifiers 182

7.4.2 Traditional CSS Codes Satisfying a Duality Consequence 183

7.4.3 Code of Steane 186

7.5 Codes for Stabilizers 187

7.5.1 The Use of Binary Indicators in Quantum Correction of Errors 188

7.5.2 Using Pauli Indicators to Fix Errors in Quantum Techniques 188

7.5.3 Using Error-Correcting Stabilizer Algorithms 189

7.5.4 Stabilizer State Encoding Computation 191

7.6 A Stabilizer Role for CSS Codes 195

References 196

8 Tolerance for Inaccurate Information in Quantum Computing 197

8.1 Introduction 197

8.2 Initiating Stable Quantum Computing 198

8.3 Computational Error Tolerance Using Steane's Code 200

8.3.1 The Complexity of Syndrome-Based Computation 201

8.3.2 Error Removal and Correction in Fault-Tolerant Systems 202

8.3.3 Steane's Code Fault-Tolerant Gates 204

8.3.4 Measurement with Fault Tolerance 206

8.3.5 Readying the State for Fault Tolerance 207

8.4 The Strength of Quantum Computation 208

8.4.1 Combinatorial Coding 208

8.4.2 A Threshold Theorem 210

References 211

9 Cryptography in Quantum Computing 213

9.1 Introduction of RSA Encryption 213

9.2 Concept of RSA Encryption 214

9.3 Quantum Cipher Fundamentals 216

9.4 The Controlled-Not Invasion as an Illustration 219

9.5 Cryptography B92 Protocol 220

9.6 The E91 Protocol (Ekert) 221

References 221

10 Constructing Clusters for Quantum Computing 223

10.1 Introduction 223

10.1.1 State of Clusters 223

10.2 The Preparation of Cluster States 224

10.3 Nearest Neighbor Matrix 227

10.4 Stabilizer States 228

10.4.1 Aside: Entanglement Witness 230

10.5 Processing in Clusters 231

References 233

11 Advance Quantum Computing 235

11.1 Introduction 235

11.2 Computing with Superpositions 236

11.2.1 The Walsh-Hadamard Transformation 236

11.2.2 Quantum Parallelism 237

11.3 Notions of Complexity 239

11.3.1 Query Complexity 240

11.3.2 Communication Complexity 241

11.4 A Simple Quantum Algorithm 242

11.4.1 Deutsch's Problem 242

11.5 Quantum Subroutines 243

11.5.1 The Importance of Unentangling Temporary Qubits in Quantum Subroutines 243

11.5.2 Phase Change for a Subset of Basis Vectors 244

11.5.3 State-Dependent Phase Shifts 246

11.5.4 State-Dependent Single-Qubit Amplitude Shifts 247

11.6 A Few Simple Quantum Algorithms 248

11.6.1 Deutsch-Jozsa Problem 248

11.6.2 Bernstein-Vazirani Problem 249

11.6.3 Simon's Problem 252

11.6.4 Distributed Computation 253

11.7 Comments on Quantum Parallelism 254

11.8 Machine Models and Complexity Classes 255

11.8.1 Complexity Classes 257

11.8.2 Complexity: Known Results 258

11.9 Quantum Fourier Transformations 260

11.9.1 The Classical Fourier Transform 261

11.9.2 The Quantum Fourier Transform 263

11.9.3 A Quantum Circuit for Fast Fourier Transform 263

11.10 Shor's Algorithm 265

11.10.1 Core Quantum Phenomena 266

11.10.2 Periodic Value Measurement and Classical Extraction 267

11.10.3 Shor's Algorithm and Its Effectiveness 268

11.10.4 The Efficiency of Shor's Algorithm 269

11.11 Omitting the Internal Measurement 270

11.12 Generalizations 271

11.12.1 The Problem of Discrete Logarithms 272

11.12.2 Hidden Subgroup Issues 272

11.13 The Application of Grover's Algorithm It's Time to Solve Some Difficulties 274

11.13.1 Explanation of the Superposition Technique 275

11.13.2 The Black Box's Initial Configuration 275

11.13.3 The Iteration Step 276

11.13.4 Various of Iterations 277

11.14 Effective State Operations 279

11.14.1 2D Geometry 281

11.15 Grover's Algorithm and Its Optimality 283

11.15.1 Reduction to Three Inequalities 284

11.16 Amplitude Amplification using Discrete Event Randomization of Grover's Algorithm 286

11.16.1 Altering Each Procedure 286

11.16.2 Last Stage Variation 287

11.16.3 Solutions: Possibly Infinite 288

11.16.4 Varying the Number of Iterations 289

11.16.5 Quantum Counting 290

11.17 Implementing Grover's Algorithm with Gain Boosting 291

References 292

12 Applications of Quantum Computing 295

12.1 Introduction 295

12.2 Teleportation 295

12.3 The Peres Partial Transposition Condition 298

12.4 Expansion of Transportation 303

12.5 Entanglement Swapping 304

12.6 Superdense Coding 305

References 307

Index 309


Kuldeep Singh Kaswan, PhD, is Professor in the School of Computing Science and Engineering at Galgotias University, Greater Noida, India. He is co-editor of the Wiley-Scrivener title Swarm Intelligence: An Approach from Natural to Artificial.

Jagjit Singh Dhatterwal, PhD, is Associate Professor in the Department of Artificial Intelligence & Data Science at Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India. He is co-editor of the Wiley-Scrivener title Swarm Intelligence: An Approach from Natural to Artificial.

Anupam Baliyan, PhD, is Additional Director with the University Institute of Engineering at Chandigarh University, Punjab, India.

Shalli Rani, PhD, is Professor at Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India. She is co-editor of the Wiley title IoT-enabled Smart Healthcare Systems, Services and Applications.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.