E-Book, Englisch, 235 Seiten
Kaya / Alhajj Influence and Behavior Analysis in Social Networks and Social Media
1. Auflage 2018
ISBN: 978-3-030-02592-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 235 Seiten
Reihe: Lecture Notes in Social Networks
ISBN: 978-3-030-02592-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Social Network to Improve the Educational Experience with the Deployment of Different Learning Models;8
2.1;1 Introduction;8
2.2;2 Social Networks in Education;10
2.2.1;2.1 Facebook;11
2.2.2;2.2 Twitter;12
2.2.3;2.3 YouTube;13
2.3;3 SLNs: Sporadic Learning Networks;14
2.4;4 OPPIA Platform;18
2.4.1;4.1 Layer Model;18
2.4.2;4.2 OPPIA Architecture;21
2.4.3;4.3 OPPIA Operation;24
2.5;5 OPPIA Implementation;27
2.6;6 Conclusions and Future Work;29
2.7;References;30
3;Temporal Model of the Online Customer Review Helpfulness Prediction with Regression Methods;33
3.1;1 Introduction;33
3.2;2 Related Works;34
3.2.1;2.1 Linear Regression;35
3.2.2;2.2 The Coefficient of Determination;36
3.2.3;2.3 The Akaike Information Criterion;36
3.3;3 Method;36
3.3.1;3.1 Corpus Collection;37
3.3.2;3.2 Morphological Preprocessing;37
3.3.3;3.3 Feature Set;38
3.3.4;3.4 Sentiment Feature Selection;38
3.3.5;3.5 Evaluation Index;39
3.4;4 Experiments;39
3.4.1;4.1 Authors and Affiliations of Chinese Customer Review Corpus;40
3.4.2;4.2 Experimental Tools;40
3.4.3;4.3 Experimental Results;40
3.4.4;4.4 Discussion;42
3.5;5 Conclusion and Future Works;43
3.6;References;44
4;Traits of Leaders in Movement Initiation: Classification and Identification;45
4.1;1 Introduction;45
4.2;2 The Proposed Approach;46
4.2.1;2.1 Bidirectional Agreement in Multi-Agent Systems;47
4.2.2;2.2 Bidirectional Agreement Condition;47
4.2.3;2.3 Leaders as State Changers;48
4.2.4;2.4 Approach Overview;49
4.2.5;2.5 FLICA;49
4.2.6;2.6 Leadership Trait Characterization Scheme;51
4.3;3 Experimental Setup;55
4.3.1;3.1 Trait of Leadership Model;55
4.3.2;3.2 Datasets;56
4.3.3;3.3 Sensitivity Analysis in Model Classification;57
4.3.4;3.4 Hypotheses Tests;57
4.3.5;3.5 Parameter Setting;58
4.4;4 Results;58
4.4.1;4.1 Traits of Leader Classification: Sensitivity Analysis;58
4.4.2;4.2 Trait Identification of Baboon Movement;60
4.4.3;4.3 Trait Identification of Fish Movement;63
4.4.4;4.4 Traits of Leaders as Measure of Degree of Hierarchy Structure;65
4.5;5 Conclusions;66
4.6;References;67
5;Emotional Valence Shifts and User Behavior on Twitter, Facebook, and YouTube;69
5.1;1 Introduction;69
5.2;2 Related Work;70
5.3;3 Data Analysis Procedure;72
5.3.1;3.1 Data Extraction;72
5.3.2;3.2 Data Preprocessing;74
5.3.3;3.3 Emotion Extraction;74
5.3.4;3.4 Data Analysis and Research Questions;75
5.4;4 Results;76
5.4.1;4.1 Emotion Intensity During Positive, Negative, and Polarizing Events;76
5.4.2;4.2 User Behavior;81
5.5;5 Discussion;85
5.6;6 Conclusion;86
5.7;References;87
6;Diffusion Algorithms in Multimedia Social Networks: A Novel Model;90
6.1;1 Introduction;90
6.2;2 Related Works;92
6.3;3 The Data Model;94
6.3.1;3.1 Definitions;94
6.3.2;3.2 Hypergraph Building and Computation;97
6.4;4 Influence Diffusion and Maximization in OSNs;98
6.5;5 Experimental Results;99
6.6;6 Conclusion and Discussions;104
6.7;References;106
7;Detecting Canadian Internet Satisfaction by Analyzing Twitter Accounts of Shaw Communications;109
7.1;1 Introduction;109
7.1.1;1.1 Problem Definition;110
7.1.2;1.2 Motivation;110
7.1.3;1.3 Summary;111
7.2;2 Related Work;111
7.2.1;2.1 Internet Issues;111
7.2.2;2.2 Sentiment Analysis;112
7.2.3;2.3 Consumer Satisfaction;113
7.3;3 Methodology;115
7.3.1;3.1 Internet Issues;115
7.3.1.1;Reported Outages;115
7.3.1.2;Common Internet Issues;116
7.3.1.3;Average Sentiment on Outage Days;116
7.3.1.4;Locations;117
7.3.2;3.2 Consumer Satisfaction;118
7.3.2.1;Sentiment;118
7.3.2.2;Word Usage;119
7.3.2.3;Hashtags;119
7.3.2.4;Response Time;119
7.4;4 Results;120
7.4.1;4.1 Internet Issues;120
7.4.1.1;Reported Outages;120
7.4.1.2;Common Internet Issues;121
7.4.1.3;Average Sentiment on Outage Days;121
7.4.1.4;Locations;122
7.4.2;4.2 Consumer Satisfaction;123
7.4.2.1;Sentiment;123
7.4.2.2;Word Usage;127
7.4.2.3;Hashtags;128
7.4.2.4;Response Time;128
7.5;5 Conclusions and Future Work;129
7.6;References;130
8;Editing Behavior Analysis for Predicting Active and Inactive Users in Wikipedia;131
8.1;1 Introduction;131
8.2;2 Related Work;133
8.3;3 Dataset;135
8.4;4 Differences in Editing Behavior;136
8.5;5 Predicting Active and Inactive Users;138
8.5.1;5.1 Most Important Features;139
8.6;6 Experimental Results;142
8.6.1;6.1 Comparison with Related Work;143
8.6.2;6.2 Early Prediction of Inactive Users;144
8.6.3;6.3 Varying the Threshold ?;145
8.7;7 Conclusions;149
8.8;References;149
9;Incentivized Social Sharing: Characteristics and Optimization;152
9.1;1 Introduction;152
9.2;2 Incentivized Sharing: A Motivating Example and Evaluation Framework;154
9.3;3 Notation and Problem Statement;157
9.4;4 Theoretical Analysis;158
9.5;5 Characteristics of the Me+3 Incentive;160
9.5.1;5.1 Incentivized Sharing Degree Distribution;161
9.5.2;5.2 Social Pressure and Adoption;162
9.5.3;5.3 Purchase Probabilities and Free Deals;164
9.5.4;5.4 Shares and Recipient Purchase References;165
9.5.5;5.5 Impact of the Incentive Amount;167
9.5.6;5.6 Arrivals and Awakening;168
9.6;6 Me+N: A Model for Incentivized Sharing Optimization;169
9.6.1;6.1 Arrival and Awakening Functions;170
9.6.2;6.2 Creating a Me+N Sharing Distribution;171
9.6.3;6.3 Generated Purchase Probabilities;172
9.6.4;6.4 Cost of Sharing Incentives;173
9.7;7 Experiments;173
9.8;8 Related Work;174
9.9;9 Conclusions;176
9.10;References;176
10;Rumor Source Detection in Finite Graphs with Boundary Effects by Message-Passing Algorithms;178
10.1;1 Introduction;178
10.1.1;1.1 Our Contributions;179
10.2;2 Preliminaries of Rumor Centrality;179
10.3;3 Trees with a Single End Vertex;181
10.3.1;3.1 Impact of Boundary Effects on P(Gn "026A30C v);181
10.3.2;3.2 Analytical Characterization of Likelihood Function;183
10.3.3;3.3 Optimality Characterization of Likelihood Estimate;185
10.3.4;3.4 Likelihood Ratio Between Centroid and End Vertex on Different Network Topology;186
10.4;4 Trees with Multiple End Vertices;188
10.4.1;4.1 Degree-Regular Tree (d?3) Special Case: Gn is Broom-Shaped;188
10.4.2;4.2 Message-Passing Algorithm;190
10.4.3;4.3 Simulation Results for Finite d-Regular Tree Networks;192
10.4.4;4.4 Simulation Results for Finite General Tree Networks;193
10.5;5 Conclusion;194
10.6;References;194
11;Robustness of Influence Maximization Against Non-adversarial Perturbations;196
11.1;1 Introduction;196
11.2;2 Related Work;199
11.3;3 Preliminaries and Problem Formulation;200
11.4;4 Methodology;201
11.4.1;4.1 Networks;201
11.4.2;4.2 Influence Spread Probability and Types of Perturbations;201
11.4.3;4.3 Influence Maximization Algorithms;203
11.5;5 Results;204
11.5.1;5.1 Overlap of Seed Nodes;204
11.5.2;5.2 Influence Spread;205
11.5.3;5.3 Relation Between Amount of Error and Effectiveness of Algorithm;207
11.6;6 Discussion;210
11.6.1;6.1 Implication;210
11.6.2;6.2 Limitations;211
11.7;7 Conclusion;211
11.8;References;211
12;Analyzing Social Book Reading Behavior on Goodreads and How It Predicts Amazon Best Sellers;214
12.1;1 Introduction;214
12.2;2 Related Works;217
12.3;3 Dataset Preparation;219
12.4;4 Characteristic Behavior;220
12.4.1;4.1 Book Ratings and Reviews;220
12.4.2;4.2 Book Genres and Book Shelves;221
12.4.3;4.3 Goodreads Users' Status Posts;223
12.4.4;4.4 Author Characteristics;225
12.5;5 Will a Book Become an Amazon Best Seller?;226
12.5.1;5.1 Performance of the Prediction Model;228
12.5.2;5.2 Discriminative Power of the Features;229
12.6;6 Close Competitors;230
12.6.1;6.1 Comparisons;231
12.7;7 Conclusions and Future Works;235
12.8;References;235




