Keller / Papanicolaou / McLaughlin | Surveys in Applied Mathematics | Buch | 978-1-4899-0438-6 | sack.de

Buch, Englisch, 264 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 532 g

Reihe: Surveys in Applied Mathematics

Keller / Papanicolaou / McLaughlin

Surveys in Applied Mathematics


Softcover Nachdruck of the original 1. Auflage 1995
ISBN: 978-1-4899-0438-6
Verlag: Springer US

Buch, Englisch, 264 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 532 g

Reihe: Surveys in Applied Mathematics

ISBN: 978-1-4899-0438-6
Verlag: Springer US


Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e., that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the "ray method," for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. \, which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near. \ = 0, or equivalently for k = 21r I A near infinity.

Keller / Papanicolaou / McLaughlin Surveys in Applied Mathematics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Asymptotic Methods for the Reduced Wave Equation and Maxwell's Equations; J.B. Keller. Whiskered Tori for Integrable PDE's-Chaotic Behavior in Near Integrable PDE's; D.W. McLaughlin, E.A. Overman, II. Diffusion in Random Media; G.C. Papanicolaou. Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.