E-Book, Englisch, 240 Seiten
Kerckhoffs Patient-Specific Modeling of the Cardiovascular System
1. Auflage 2010
ISBN: 978-1-4419-6691-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Technology-Driven Personalized Medicine
E-Book, Englisch, 240 Seiten
ISBN: 978-1-4419-6691-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Peter Hunter Computational physiology for the cardiovascular system is entering a new and exciting phase of clinical application. Biophysically based models of the human heart and circulation, based on patient-specific anatomy but also informed by po- lation atlases and incorporating a great deal of mechanistic understanding at the cell, tissue, and organ levels, offer the prospect of evidence-based diagnosis and treatment of cardiovascular disease. The clinical value of patient-specific modeling is well illustrated in application areas where model-based interpretation of clinical images allows a more precise analysis of disease processes than can otherwise be achieved. For example, Chap. 6 in this volume, by Speelman et al. , deals with the very difficult problem of trying to predict whether and when an abdominal aortic aneurysm might burst. This requires automated segmentation of the vascular geometry from magnetic re- nance images and finite element analysis of wall stress using large deformation elasticity theory applied to the geometric model created from the segmentation. The time-varying normal and shear stress acting on the arterial wall is estimated from the arterial pressure and flow distributions. Thrombus formation is identified as a potentially important contributor to changed material properties of the arterial wall. Understanding how the wall adapts and remodels its material properties in the face of changes in both the stress loading and blood constituents associated with infl- matory processes (IL6, CRP, MMPs, etc.
Autoren/Hrsg.
Weitere Infos & Material
1;Patient Specific Modelingof the Cardiovascular System;3
1.1;Foreword;5
1.2;Preface;9
1.2.1;References;12
1.3;Contents;15
1.4;Contributors;17
1.5;Chapter 1: Integrating State-of-the-Art Computational Modeling with Clinical Practice: The Promise of Numerical Methods;23
1.5.1;1.1 Introduction;23
1.5.2;1.2 Imaging Methods Used in Patient-Specific Modeling;24
1.5.2.1;1.2.1 Echocardiography;24
1.5.2.2;1.2.2 Computed Tomography;24
1.5.2.3;1.2.3 Nuclear Imaging;25
1.5.2.4;1.2.4 Magnetic Resonance Imaging;25
1.5.2.5;1.2.5 Use of Imaging Data;25
1.5.3;1.3 Current Use of Patient-Specific Models in Cardiac Electrophysiology;26
1.5.3.1;1.3.1 Overview of Modeling During Invasive Electrophysiology Study and Ablation;26
1.5.3.2;1.3.2 Current Application of Computer Modeling in Atrial Arrhythmias;27
1.5.3.2.1;1.3.2.1 Atrial Fibrillation;27
1.5.3.2.2;1.3.2.2 Atypical Atrial Flutter and Focal Atrial Tachycardia;29
1.5.3.3;1.3.3 Current Application of Computer Modeling in Ventricular Arrhythmias;30
1.5.3.3.1;1.3.3.1 Premature Ventricular Contractions and Ventricular Tachycardia;30
1.5.3.3.2;1.3.3.2 Ventricular Fibrillation;31
1.5.3.4;1.3.4 Application in Remote Catheter Manipulation;32
1.5.3.5;1.3.5 Application in Cardiac Resynchronization Therapy;32
1.5.3.6;1.3.6 Application in Sudden Cardiac Death;32
1.5.4;1.4 Future Applications of Computer Modeling in Clinical Cardiac Electrophysiology;33
1.5.4.1;1.4.1 Atrial Arrhythmias;34
1.5.4.2;1.4.2 Ventricular Arrhythmias;34
1.5.4.3;1.4.3 Resynchronization Therapy and Congestive Heart Failure;34
1.5.5;1.5 Conclusion;35
1.5.6;References;36
1.6;Chapter 2: Patient-Specific Modeling of Cardiovascular Dynamics with a Major Role for Adaptation;42
1.6.1;2.1 Introduction;42
1.6.2;2.2 Cardiovascular Forward Models;45
1.6.3;2.3 Integration to a Comprehensive Circulatory System;47
1.6.4;2.4 Adaptation Rules;49
1.6.5;2.5 Examples of Patient-Specific Modeling;52
1.6.5.1;2.5.1 Reference State;52
1.6.5.2;2.5.2 Non-invasively Obtained LV Pump Function and Myofiber Function;53
1.6.5.3;2.5.3 Complete Pressure–Volume Loop of the Left Ventricle;56
1.6.5.4;2.5.4 Delay of the LV Activation in Left Bundle Branch Block;56
1.6.6;2.6 Discussion;58
1.6.7;References;60
1.7;Chapter 3: Patient-Specific Modeling of Structure and Function of Cardiac Cells;63
1.7.1;3.1 Introduction;63
1.7.2;3.2 Cardiac Cells;64
1.7.3;3.3 Cardiovascular Diseases and Cellular Phenotype;65
1.7.4;3.4 Imaging of Cardiac Cells;67
1.7.5;3.5 Modeling of Cardiac Cells;69
1.7.5.1;3.5.1 Functional Modeling;69
1.7.5.1.1;3.5.1.1 Development and Implementation of Functional Models;69
1.7.5.1.2;3.5.1.2 Models of Cardiac Cells;69
1.7.5.2;3.5.2 Structural Modeling;72
1.7.5.2.1;3.5.2.1 Development of Structural Models;72
1.7.5.2.2;3.5.2.2 Image Processing;73
1.7.5.2.3;3.5.2.3 Model Representation;75
1.7.6;3.6 Clinical Perspective;76
1.7.7;References;77
1.8;Chapter 4: Studies of Therapeutic Strategies for Atrial Fibrillation Based on a Biophysical Model of the Human Atria;82
1.8.1;4.1 Introduction;82
1.8.2;4.2 Computer Modeling of AF;83
1.8.2.1;4.2.1 Biophysical Model of Human Atria;84
1.8.2.1.1;4.2.1.1 Atrial Geometry;85
1.8.2.1.2;4.2.1.2 Electrical Propagation in Atrial Tissue;85
1.8.2.1.3;4.2.1.3 Atrial Cellular Model;85
1.8.2.2;4.2.2 Modeling Different Types of AF;86
1.8.2.2.1;4.2.2.1 Multiple Wavelet AF;86
1.8.2.2.2;4.2.2.2 Meandering Wavelet AF;86
1.8.2.2.3;4.2.2.3 Heterogeneities;87
1.8.2.2.4;4.2.2.4 Focal AF;87
1.8.2.3;4.2.3 Link to Clinical Data;87
1.8.3;4.3 Therapeutic Strategies for AF;88
1.8.3.1;4.3.1 Modeling AF Therapies;88
1.8.3.1.1;4.3.1.1 AF Database;88
1.8.4;4.4 Spontaneous Termination of AF;89
1.8.4.1;4.4.1 Simulation of Spontaneously Terminated Episodes;89
1.8.4.2;4.4.2 Temporal Scales of Termination;90
1.8.4.3;4.4.3 Spatial Scales of Termination;91
1.8.5;4.5 Ablation of AF;91
1.8.6;4.6 Pacing of AF;93
1.8.6.1;4.6.1 Pacing Protocol and Assessment of AF Capture;93
1.8.6.2;4.6.2 AF Pacing Results;94
1.8.7;4.7 Conclusion;96
1.8.8;References;96
1.9;Chapter 5: Patient-Specific Modeling for Critical Care;99
1.9.1;5.1 Introduction;99
1.9.2;5.2 Examples of Patient-Specific Modeling in Critical Care;100
1.9.2.1;5.2.1 Hemodynamic Models;100
1.9.2.1.1;5.2.1.1 Cardiac Output Estimation;102
1.9.2.1.2;5.2.1.2 Simulating Response to Traumatic Brain Injury;103
1.9.2.2;5.2.2 Models of Glucose and Insulin Dynamics;104
1.9.2.2.1;5.2.2.1 Controlling Blood Glucose Levels;104
1.9.3;5.3 Current Challenges;105
1.9.3.1;5.3.1 Clinical Validation;106
1.9.3.2;5.3.2 Timely Tuning Methods;106
1.9.3.3;5.3.3 Variability in Patient Anatomy, Physiology and Clinical Scenario;107
1.9.3.4;5.3.4 Model Interoperability;108
1.9.4;5.4 Vision for the Future;110
1.9.5;References;111
1.10;Chapter 6: Biomechanical Analysis of Abdominal Aortic Aneurysms;113
1.10.1;6.1 Abdominal Aortic Aneurysm;113
1.10.2;6.2 AAA Risk Stratification;114
1.10.3;6.3 AAA Biomechanical Analysis;115
1.10.3.1;6.3.1 Wall Stress Reproducibility;116
1.10.3.2;6.3.2 Initial Stress;118
1.10.3.3;6.3.3 Intraluminal Thrombus;118
1.10.3.4;6.3.4 Material Properties;120
1.10.3.5;6.3.5 Future Directions;121
1.10.4;6.4 Clinical Application;122
1.10.5;6.5 Scope and Limitations;123
1.10.6;6.6 Clinical Perspectives;125
1.10.7;6.7 Conclusion;125
1.10.8;References;125
1.11;Chapter 7: The Cardiac Atlas Project: Towards a Map of the Heart;130
1.11.1;7.1 Introduction;130
1.11.2;7.2 Cardiovascular Magnetic Resonance Imaging;131
1.11.3;7.3 Mapping Shape and Motion;132
1.11.4;7.4 Population Models;134
1.11.4.1;7.4.1 Parametric Distribution Models;134
1.11.4.2;7.4.2 Clinical Functional Modes;135
1.11.5;7.5 Data Fusion;136
1.11.6;7.6 The CAP Databases;138
1.11.6.1;7.6.1 Production Database (CCB);138
1.11.6.2;7.6.2 Research Database;139
1.11.7;7.7 The CAP Client;140
1.11.8;7.8 CAP Data Access;142
1.11.8.1;7.8.1 Upload and Deidentification;142
1.11.8.2;7.8.2 Ownership and Control of Data Use;142
1.11.8.3;7.8.3 Protocols for Users;143
1.11.8.4;7.8.4 Informed Consent and Institutional Review Board Approval;143
1.11.9;7.9 Conclusions and Future Work;144
1.11.9.1;7.9.1 Grid Enabling;144
1.11.9.2;7.9.2 Ontologies;144
1.11.10;References;145
1.12;Chapter 8: In Vivo Myocardial Material Properties and Stress Distributions in Normal and Failing Human Hearts;147
1.12.1;8.1 Introduction;147
1.12.2;8.2 Left Ventricular Diastolic Function;149
1.12.2.1;8.2.1 Methodology for Model Generation and Strain Calculation in the Left Ventricle;149
1.12.2.2;8.2.2 Left Ventricular Myofiber Stress Distributions in a Normal Human Subject and a Patient with Diastolic Heart Failure;151
1.12.3;8.3 A Computationally Efficient Formal Optimization of Regional Myocardial Contractility;154
1.12.4;References;158
1.13;Chapter 9: Modeling of Whole-Heart Electrophysiology and Mechanics: Toward Patient-Specific Simulations;161
1.13.1;9.1 Introduction;161
1.13.2;9.2 Image Segmentation;162
1.13.2.1;9.2.1 Suspension Medium Removal;163
1.13.2.2;9.2.2 Level Set Segmentation;163
1.13.2.3;9.2.3 Segmentation of Ventricles;164
1.13.2.4;9.2.4 Infarct Segmentation;164
1.13.3;9.3 Electrical Mesh Generation;164
1.13.4;9.4 Mechanical Mesh Generation;166
1.13.5;9.5 Modeling of Electrophysiology: General Aspects;167
1.13.6;9.6 Modeling of Electromechanics: General Aspects;168
1.13.7;9.7 Cardiac Electrophysiology Modeling Example: Ventricular Tachycardia in the Infarcted Canine Heart;169
1.13.8;9.8 Cardiac Electromechanics Modeling Example: Electromechanical Delay in the Normal Canine Heart;171
1.13.9;9.9 On the Road to Patient-Specific Modeling;173
1.13.9.1;9.9.1 Processing Pipeline for Estimating Patient-Specific Fiber Orientations;174
1.13.9.2;9.9.2 Reconstruction of Patient Heart Geometry;174
1.13.9.3;9.9.3 Deformation of Atlas Heart Geometry;175
1.13.9.4;9.9.4 Deformation of Atlas Fiber Orientations;177
1.13.9.5;9.9.5 Pipeline Validation;178
1.13.10;9.10 Conclusion;178
1.13.11;References;178
1.14;Chapter 10: Personalized Computational Models of the Heart for Cardiac Resynchronization Therapy;182
1.14.1;10.1 Introduction;182
1.14.2;10.2 Clinical Context, Data Acquisition, and Fusion;184
1.14.3;10.3 Personalized Anatomy;186
1.14.4;10.4 Personalized Electrophysiology;187
1.14.5;10.5 Personalized Electromechanical Models;188
1.14.5.1;10.5.1 Personalized Kinematics;189
1.14.5.2;10.5.2 Personalized Mechanics;191
1.14.6;10.6 Prediction of the Acute Effects of Pacing on Left Ventricular Pressure;192
1.14.7;10.7 Conclusion;193
1.14.8;References;194
1.15;Chapter 11: Patient-Specific Modeling of Hypoxic Response and Microvasculature Dynamics;198
1.15.1;11.1 Introduction;198
1.15.2;11.2 Hypoxic Response in Disease;200
1.15.3;11.3 Hypoxic Response and Oxygen Sensing Models;202
1.15.3.1;11.3.1 Blood Flow and Oxygen Transport;203
1.15.3.2;11.3.2 NO and Vasodilation;203
1.15.3.3;11.3.3 Hypoxia-Inducible Factor 1: The Hypoxia Transcription Factor;204
1.15.3.3.1;11.3.3.1 Therapeutic Modulation of Cofactors in the HIF1 Pathway;204
1.15.3.3.2;11.3.3.2 Effects of Chronic Hypoxia at the Molecular Level;205
1.15.3.3.3;11.3.3.3 Reactive Oxygen Species Effect in the Hypoxic Response Signaling Pathway;205
1.15.3.3.4;11.3.3.4 HIF1 Intracellular Signaling Leading to VEGF Expression Changes;207
1.15.3.4;11.3.4 Cell-Level and Integrated, Multiscale Angiogenesis Models;208
1.15.4;11.4 Modeling Individual Variability;209
1.15.5;11.5 Discussion and Conclusions: Integrating and Validating Inter- and Intra-patient Variation on Multiple Scales;211
1.15.6;References;211
1.16;Chapter 12: A Computational Framework for Patient-Specific Multi-Scale Cardiac Modeling;217
1.16.1;12.1 Introduction;217
1.16.2;12.2 Multi-Scale Framework of Cardiac Modeling;218
1.16.3;12.3 Input Data Pipeline for Patient-Specific Multi-Scale Cardiac Modeling;219
1.16.3.1;12.3.1 Ventricular Anatomy and Fiber Architecture;219
1.16.3.2;12.3.2 Hemodynamics;220
1.16.3.3;12.3.3 Electrophysiology;221
1.16.4;12.4 Software Architecture;221
1.16.5;12.5 Database Server;221
1.16.6;12.6 Solver Client;224
1.16.7;12.7 Model Editors;225
1.16.8;12.8 Solver Server;225
1.16.9;12.9 Imaging and Fitting Modules;227
1.16.10;12.10 Mesh Module;228
1.16.11;12.11 Biomechanics;229
1.16.12;12.12 Electrophysiology Module;230
1.16.13;12.13 Fully Coupled Electromechanics Models;231
1.16.14;12.14 Plug-in Applications;232
1.16.15;12.15 Computational Requirements;233
1.16.16;12.16 Limitations;234
1.16.17;References;235
1.17;Appendix: Mathematical Modeling Language Code for the Hemodynamic Model in Fig..5.1b;238
1.18;Biography;242
1.19;Index;243




