Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting | Buch | 978-3-03897-292-1 | sack.de

Buch, Englisch, 186 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 487 g

Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting


1. Auflage 2018
ISBN: 978-3-03897-292-1
Verlag: MDPI AG

Buch, Englisch, 186 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 487 g

ISBN: 978-3-03897-292-1
Verlag: MDPI AG


The development of kernel methods and hybrid evolutionary algorithms (HEAs) to support experts in energy forecasting is of great importance to improving the accuracy of the actions derived from an energy decision maker, and it is crucial that they are theoretically sound. In addition, more accurate or more precise energy demand forecasts are required when decisions are made in a competitive environment. Therefore, this is of special relevance in the Big Data era. These forecasts are usually based on a complex function combination. These models have resulted in over-reliance on the use of informal judgment and higher expense if lacking the ability to catch the data patterns. The novel applications of kernel methods and hybrid evolutionary algorithms can provide more satisfactory parameters in forecasting models.
We aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards the development of HEAs with kernel methods or with other novel methods (e.g., chaotic mapping mechanism, fuzzy theory, and quantum computing mechanism), which, with superior capabilities over the traditional optimization approaches, aim to overcome some embedded drawbacks and then apply these new HEAs to be hybridized with original forecasting models to significantly improve forecasting accuracy.

Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting jetzt bestellen!

Zielgruppe


Professionals/Scholars

Weitere Infos & Material


Hong, Wei-Chiang
School of Computer Science and Technology, Jiangsu Normal University, China



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.