Koroliouk / Samoilenko | Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms | Buch | 978-1-78630-911-2 | sack.de

Buch, Englisch, 272 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 577 g

Koroliouk / Samoilenko

Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms


1. Auflage 2023
ISBN: 978-1-78630-911-2
Verlag: Wiley

Buch, Englisch, 272 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 577 g

ISBN: 978-1-78630-911-2
Verlag: Wiley


Koroliouk / Samoilenko Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms jetzt bestellen!

Weitere Infos & Material


Preface ix

Introduction xi

Chapter 1 Multidimensional Models of Kac Type 1

1.1. Definitions and basic properties 1

1.2. Moments of evolutionary process 8

1.3. Systems of Kolmogorov equations 17

1.4. Evolutionary operator and theorem about weak convergence to the measure of the Wiener process 23

Chapter 2 Symmetry of Markov Random Evolutionary Processes in Rn 29

2.1. Symmetrization: definition and properties 29

2.2. Examples of symmetric distributions in Rn and distributions on n + 1-hedra32

2.2.1. Symmetric distributions 32

2.2.2. Distributions on n + 1-hedra 35

Chapter 3 Hyperparabolic Equations, Integral Equation and Distribution for Markov Random Evolutionary Processes 39

3.1. Hyperparabolic equations and methods of solving Cauchy problems 39

3.2. Analytical solution of a hyperparabolic equation with real-analytic initial conditions 46

3.3. Integral representation of the hyperparabolic equation 57

3.4. Distribution function of evolutionary process 67

Chapter 4 Fading Markov Random Evolutionary Process 77

4.1. Definition of fading Markov random evolutionary process, its moments and limit distribution 77

4.2. Integral equation for a function from the fading random evolutionary process 89

4.3. Equations in partial derivatives for a function of the fading random evolutionary process 93

Chapter 5 Two Models of the Evolutionary Process 99

5.1. Evolution on a complex plane 99

5.2. Evolution with infinitely many directions 109

5.2.1. Symmetric case 110

5.2.2. Non-symmetric case 119

Chapter 6 Diffusion Process with Evolution and Its Parameter Estimation 125

6.1. Asymptotic diffusion environment 125

6.2. Approximation of a discrete Markov process in asymptotic diffusion environment 127

6.3. Parameter estimation of the limit process 132

Chapter 7 Filtration of Stationary Gaussian Statistical Experiments 135

7.1. Introduction 135

7.2. Stochastic difference equation of the process of filtration 137

7.3. Coefficient of filtration 138

7.4. Equation of optimal filtration 139

7.5. Characterization of a filtered signal 141

Chapter 8 Adapted Statistical Experiments with Random Change of Time 143

8.1. Introduction 143

8.2. Statistical experiments and evolutionary processes 144

8.3. Stochastic dynamics of statistical experiments 145

8.4. Adapted statistical experiments in series scheme 147

8.5. Convergence of the adapted statistical experiments 149

8.6. Scaling parameter estimation 154

8.7. Statistical estimations of the renewal intensity parameter 155

8.7.1. Poisson’s renewal process with parameter q =2 156

8.7.2. Stationary renewal process with delay, determined by the initial distribution function of the limit over jumps 156

8.7.3. Renewal processes with arbitrarily distributed renewal intervals 157

Chapter 9 Filtering of Stationary Gaussian Statistical Experiments 159

9.1. Stationary statistical experiments 159

9.2. Filtering of discrete Markov diffusion 161

9.3. The filtering error 164

9.4. The filtering empirical estimation 166

Chapter 10 Asymptotic Large Deviations for Markov Random Evolutionary Process 171

10.1. Asymptotic large deviations 171

10.2. Asymptotically stopped Markov random evolutionary process 191

10.3. Explicit representation for the normalizing function 206

Chapter 11 Asymptotic Large Deviations for Semi-Markov Random Evolutionary Processes 209

11.1. Recurrent semi-Markov random evolutionary processes 209

11.2. Asymptotic large deviations 212

Chapter 12 Heuristic Principles of Phase Merging in Reliability Analysis 221

12.1. The duplicated renewal system 221

12.2. The duplicated renewal system in the series scheme 222

12.3. Heuristic principles of the phase merging 223

12.4. The duplicated renewal system without failure 225

References 227

Index 233


Dmitri Koroliouk is a Doctor of Sciences, Professor at the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, and leading researcher at the Institute of Mathematics, and at the Institute of Telecommunications and Global Information Space of the National Academy of Sciences of Ukraine. He is also Head of the Digital Innovation Laboratory at UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, at the University of Rome Tor Vergata, Italy.

Igor Samoilenko is a Doctor of Sciences, Professor at the Taras Shevchenko National University of Kyiv, and Professor at the Institute for Applied System Analysis, part of the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.