Korzhik / Gektin | Engineering of Scintillation Materials and Radiation Technologies | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 227, 319 Seiten

Reihe: Springer Proceedings in Physics

Korzhik / Gektin Engineering of Scintillation Materials and Radiation Technologies

Selected Articles of ISMART2018
1. Auflage 2019
ISBN: 978-3-030-21970-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Articles of ISMART2018

E-Book, Englisch, Band 227, 319 Seiten

Reihe: Springer Proceedings in Physics

ISBN: 978-3-030-21970-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



       This proceedings book presents dual approaches to examining new theoretical models and their applicability in the search for new scintillation materials and, ultimately, the development of industrial technologies. The ISMART conferences bring together the radiation detector community, from fundamental research scientists to applied physics experts, engineers, and experts on the implementation of advanced solutions. This scientific forum builds a bridge between the different parts of the community and is the basis for multidisciplinary, cooperative research and development efforts. The main goals of the conference series are to review the latest results in scintillator development, from theory to applications, and to arrive at a deeper understanding of fundamental processes, as well as to discover components for the production of new generations of scintillation materials.        The book highlights recent findings and hypotheses, key advances, as well as exotic detector designs and solutions, and includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, as well as the development and characterization of ionizing radiation detection equipment. It also touches on the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, trends in and applications for security, and exploration of hydrocarbons and ecological monitoring.

Mikhail Korzhik (Korjik) received his diploma in Physics at the Belarus State University in 1981. He got his PhD in 1991 and Doctoral Diploma in 2005 in Nuclear Physics and Optics. Since the beginning of nineties he was deeply involved in research and development of inorganic scintillation materials. He was instrumental in the development of the YAlO3:Ce technology for low energy gamma-rays detection. An important achievement has been the discovery of  Pr3+ doped scintillation media and GdAlO3:Ce and LuAlO3:Ce scintillation materials. His study promoted the understanding of scintillation mechanism in many crystals. He took part in the discovery and mass production technology development of the lead tungstate PbWO4 scintillation crystal for high energy physics application, which resulted in the use of this crystal in two ambitious experiments at LHC, CMS and ALICE and an important contribution to the discovery of the Higgs boson. He is member of the Scientific Advisory Committee of the SCINT cycle of International Conferences dedicated to scintillation materials development.
Alexander Gektin received his diploma after graduating at the Physical faculty of Kharkov university. His PhD thesis (1981) was devoted to defects study in halide crystals. He got his DrSci degree in 1990 (Riga, Latvia) when he investigated the influence of high irradiation doses to crystals. During the last two decades he took part as a renowned scintillation material scientist to several international projects like BELLE, BaBar, PiBeta, CMS in high energy physics, GLAST and AGILLE in astrophysics. At the same time he has led several developments for medical imaging (large area SPECT scintillator) and security systems (600 mm long position sensitive detectors).The major part of these technology developments was transferred to different industrial production lines. At the same time he is known as an expert in the study of fundamental processes of energy absorption, relaxation and light emission in scintillation materials. He has authored more then 250 publications. He is also an Associated Editor of IEEE Transaction of Nuclear Sciences.

Korzhik / Gektin Engineering of Scintillation Materials and Radiation Technologies jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;Contributors;9
3;Fundamental Studies;14
4;1 Fast Processes in Scintillators;15
4.1;1.1 Introduction. Why Do We Need Fast Timing and How Fast Should It Be?;15
4.2;1.2 General Description of Stages of Energy Relaxation in Scintillators;16
4.2.1;1.2.1 Interaction of Primary Ionizing Particle with Crystal;16
4.2.2;1.2.2 Thermalization of Electronic Excitations;18
4.2.3;1.2.3 Different Types of Emission Centers and Energy Transfer to Them;19
4.2.4;1.2.4 Spatial Distribution of Excitations After Thermalization;20
4.3;1.3 Timing Properties of IBL and CL;22
4.4;1.4 Rise Profile of Recombination Luminescence Response;24
4.5;1.5 Additional Delays Due to Finite Track Length and Light Propagation to the Photon Detector;26
4.6;1.6 Conclusions;27
4.7;References;27
5;2 Transient Phenomena in Scintillation Materials;30
5.1;2.1 Introduction;30
5.1.1;2.1.1 A Challenge of Persistently Increasing Importance;30
5.1.2;2.1.2 New Parameters of Importance;31
5.1.3;2.1.3 Inherent Phenomena of Importance for Currently Important Properties;32
5.2;2.2 Differential Optical Absorption as a Tool for Studying the Time Response of Fast Scintillators;33
5.3;2.3 Results and Discussion;34
5.3.1;2.3.1 Carrier Trapping in GAGG:Ce;34
5.3.2;2.3.2 Carrier Trapping in LYSO:Ce;36
5.4;2.4 Conclusions;37
5.5;References;38
6;3 Fluctuations of Track Structure and Energy Resolution of Scintillators;40
6.1;3.1 Introduction;40
6.2;3.2 Intrinsic and Total Energy Resolution;42
6.3;3.3 Stages of Energy Conversion in Scintillators and Inputs to Intrinsic Energy Resolution;43
6.4;3.4 Conclusions;49
6.5;References;49
7;4 New Properties and Prospects of Hot Intraband Luminescence for Fast timing;51
7.1;4.1 Fast Timing: Applications and Problems;52
7.2;4.2 The History of Hot Intraband Luminescence;53
7.3;4.3 Modern Research of Hot Intraband Luminescence and Its Future Perspectives;57
7.4;4.4 Conclusions;60
7.5;References;61
8;Material Science;64
9;5 Ceramic Scintillation Materials—Approaches, Challenges and Possibilities;65
9.1;5.1 Introduction;65
9.2;5.2 Materials and Methods;66
9.3;5.3 Ceramic Technology Overview;67
9.3.1;5.3.1 Powder Synthesis;67
9.3.2;5.3.2 Compaction;72
9.3.3;5.3.3 Sintering;74
9.4;5.4 Conclusions;77
9.5;References;77
10;6 Scintillation Materials with Disordered Garnet Structure for Novel Scintillation Detectors;83
10.1;6.1 Introduction;83
10.2;6.2 Samples and Measurements;84
10.3;6.3 Results and Discussion;85
10.4;6.4 Conclusions;89
10.5;References;89
11;7 Garnet Crystal Growth in Non-precious Metal Crucibles;90
11.1;7.1 Introduction;90
11.2;7.2 Experimental;92
11.2.1;7.2.1 Crystal Growth;92
11.2.2;7.2.2 Measurement of Optical Properties;92
11.2.3;7.2.3 Measurement of Decay Times;92
11.3;7.3 Choice of Optimal Crucible Materials and Crystallizer Construction Material;92
11.4;7.4 Features of Interactions Between YAG Raw Material, Crystal, Melt and Protective Atmosphere;94
11.5;7.5 Growth of YAG:C Crystals and Their Characterization;95
11.6;7.6 Development of YAG Activation Methods by Trivalent Cerium;98
11.7;7.7 Conclusions;100
11.8;References;100
12;Technology and Production;103
13;8 Towards New Production Technologies: 3D Printing of Scintillators;104
13.1;8.1 Introduction;104
13.2;8.2 A Brief Historical Review;105
13.2.1;8.2.1 1980s the Infancy Stage of Additive Manufacturing;105
13.2.2;8.2.2 1990s Adolescence Stage;106
13.2.3;8.2.3 2000s Adulting Stage;106
13.2.4;8.2.4 2010s and Future Perspectives;107
13.3;8.3 Recent Progress in the 3D Printing;107
13.3.1;8.3.1 Classification of 3D Printing Techniques. Basic Steps;107
13.3.2;8.3.2 The Main Features of Different 3D Printing Techniques;108
13.3.3;8.3.3 Stereolithography Is the Most Promising Method;112
13.3.4;8.3.4 General Recommendations and Remarks;113
13.4;8.4 Conclusions;115
13.5;References;115
14;9 Enriched 40Ca100MoO4 Single Crystalline Material for Search of Neutrinoless Double Beta Decay;118
14.1;9.1 Introduction;118
14.2;9.2 40Ca100MoO4 Scintillation Crystal Production;120
14.2.1;9.2.1 Production of Enriched 100Mo and Depleted 48Ca Isotopes and Synthesis of 40Ca100MoO4 Growth Charge;120
14.2.2;9.2.2 Recycling of Waste After 40Ca100MoO4 Purification-Crystallization Chain of the Production;122
14.2.3;9.2.3 Crystal Growth;124
14.3;9.3 Radioactivity Measurements of 40Ca100MoO4 Scintillation Elements;127
14.4;9.4 Conclusions;128
14.5;References;128
15;10 Plastic Scintillators with the Improved Radiation Hardness Level;130
15.1;10.1 Introduction;130
15.2;10.2 Improving the Radiation Hardness of Plastic Scintillator;133
15.2.1;10.2.1 Improving the Radiation Hardness of Plastic Scintillator by a Longer-Wave Shifter;133
15.2.2;10.2.2 Fluorination of Activator Molecules;138
15.2.3;10.2.3 Improving Radiation Hardness PS by Increasing the Mobility of Radicals;143
15.3;10.3 Conclusions;149
15.4;References;150
16;11 State of the Art of Scintillation Crystal Growth Methods;151
16.1;11.1 Introduction;151
16.2;11.2 The Growth of Large Volume Crystals;152
16.2.1;11.2.1 Methods of Directional Solidification;152
16.2.2;11.2.2 Methods of Crystal Pulling;156
16.2.3;11.2.3 Skull Method of Crystal Growth;158
16.3;11.3 Small Volume Crystals Growth;161
16.3.1;11.3.1 ?-PD Method;161
16.3.2;11.3.2 EFG Technique;162
16.4;11.4 Conclusion;163
16.5;References;163
17;Detector Solutions;166
18;12 Application of Scintillation Detectors in Cosmic Experiments;167
18.1;12.1 Introduction;167
18.2;12.2 Basic Principles of Scintillating Detectors;169
18.2.1;12.2.1 Organic Scintillators;170
18.2.2;12.2.2 Inorganic Scintillators;170
18.3;12.3 Cosmic Ray Detectors;172
18.3.1;12.3.1 Neutron Detectors;173
18.3.2;12.3.2 X-Ray and Gamma Ray Detectors;174
18.3.3;12.3.3 Gamma Ray Telescopes;175
18.3.4;12.3.4 MeV Band of Gamma-Ray Astronomy;178
18.3.5;12.3.5 Polarization Measurements;180
18.3.6;12.3.6 New Type Detectors for GRBs Study On-Board CubeSats;182
18.4;12.4 Conclusions;183
18.5;References;184
19;13 Neutron Cross Section Measurements with Diamond Detectors;188
19.1;13.1 Introduction;188
19.2;13.2 Measurement Setup;189
19.3;13.3 Pulse-Shape Analysis;189
19.4;13.4 Results;190
19.5;References;193
20;14 Investigation of the Properties of the Heavy Scintillating Fibers for Their Potential Use in Hadron Therapy Monitoring;195
20.1;14.1 Introduction;195
20.2;14.2 Requirements for the Scintillating Material;198
20.3;14.3 Experimental Technique;200
20.4;14.4 Properties of the Scintillating Fibers;202
20.4.1;14.4.1 Decay Constants;203
20.4.2;14.4.2 Attenuation Length;204
20.4.3;14.4.3 Light Yield;205
20.4.4;14.4.4 Energy Resolution;206
20.4.5;14.4.5 Timing Resolution;206
20.5;14.5 Conclusions;207
20.6;References;208
21;15 Development of a Submillimeter Portable Gamma-Ray Imaging Detector, Based on a GAGG:Ce—Silicon Photomultiplier Array;211
21.1;15.1 Introduction;212
21.2;15.2 Materials and Methods;213
21.3;15.3 Results and Discussion;215
21.4;15.4 Conclusion;217
21.5;References;218
22;16 Application Scintillation Comparators for Calibration Low Intense Gamma Radiation Fields by Dose Rate in the Range of 0.03–0.1 µSv/h;220
22.1;16.1 Introduction;220
22.2;16.2 Gamma Radiation Comparator;222
22.2.1;16.2.1 Developing of the Gamma Radiation Comparator;222
22.2.2;16.2.2 Comparator Metrological Characteristics Examination;222
22.2.3;16.2.3 IEC Recommendations for Near-Background Measurements;225
22.2.4;16.2.4 Application Scintillation Comparators for Calibration Low Intense Gamma Radiation Fields by Dose Rate in the Range of 0.03–0.1 µSv/h;226
22.3;16.3 Conclusions;232
22.4;References;233
23;17 Antineutrino Detectors;235
23.1;17.1 Introduction;235
23.2;17.2 Reactor Antineutrino Energy Spectra;236
23.3;17.3 Detecting Reactions: Inverse Beta-Decay;237
23.4;17.4 Possible Detector Designs;238
23.4.1;17.4.1 General Requirements;239
23.4.2;17.4.2 Detector Design and Materials;240
23.4.3;17.4.3 Detector Location;241
23.5;17.5 Conclusions;242
23.6;References;242
24;Instrumentation;244
25;18 Development of the X-ray Security Screening Systems at ADANI;245
25.1;18.1 Introduction;245
25.2;18.2 Security Solutions;246
25.2.1;18.2.1 People Screening;246
25.2.2;18.2.2 Cargo and Vehicle X-Ray Inspection;248
25.2.3;18.2.3 Parcels, Baggage and Small Cargo X-Ray Inspection;251
25.3;18.3 Inherent Components;252
25.3.1;18.3.1 Scintillators;252
25.3.2;18.3.2 X-ray Detectors Tests;253
25.4;18.4 Conclusions;254
25.5;References;255
26;19 Optimization of Physico-Topological Parameters of Dual Energy X-ray Detectors Applied in Inspection Equipment;256
26.1;19.1 Introduction;256
26.2;19.2 Model and Research Methodology;257
26.3;19.3 Materials;260
26.4;19.4 Results;261
26.5;19.5 Conclusion;264
26.6;References;264
27;20 Control of Organ and Tissue Doses to Patients During Computed Tomography;265
27.1;20.1 Introduction;265
27.2;20.2 Materials and Methods;268
27.3;20.3 Results;270
27.4;20.4 Conclusions;272
27.5;References;272
28;21 Information Tool for Multifarious Scientific and Practical Research;274
28.1;21.1 Introduction;274
28.2;21.2 History of eLab Development;275
28.3;21.3 eLab Features;279
28.4;21.4 Process System Approach;280
28.5;21.5 Propositions and Conclusions;283
28.6;References;284
29;22 Calibration and Performance of the CMS Electromagnetic Calorimeter During the LHC Run II;286
29.1;22.1 Introduction;286
29.2;22.2 Reconstruction, Calibration and Performance of ECAL at the LHC Run II;287
29.3;22.3 Conclusions;291
29.4;References;291
30;23 Study the Applicability of Neutron Calibration Facility for Spectrometer Calibration as a Source of Gamma Rays with Energies to 10 MeV;292
30.1;23.1 Introduction;292
30.2;23.2 Experimental;293
30.3;23.3 Results and Discussion;294
30.4;23.4 Conclusions;296
30.5;References;297
31;24 Thermal Neutron Detector Based on LaOBr:Ce/LiF;298
31.1;24.1 Introduction;298
31.2;24.2 Experiment;299
31.2.1;24.2.1 Chemicals and Radionuclides;299
31.2.2;24.2.2 Sample Preparation and Synthesis;299
31.2.3;24.2.3 Devices and Equipment;300
31.2.4;24.2.4 Methodology of Measurement;300
31.2.5;24.2.5 Results and Discussion;302
31.3;24.3 Conclusions;305
31.4;References;306
32;25 Specifics of 3D-Printed Electronics;308
32.1;25.1 Introduction;308
32.2;25.2 Concise Review of Polymer 3D Printing;309
32.2.1;25.2.1 Polymer 3D Printing;309
32.2.2;25.2.2 3D Printing Technology;311
32.3;25.3 Modeling of Conductive Properties of 3D-Printed Lattices;312
32.3.1;25.3.1 Application of the Theory of Resistive Networks to 3D Printed Structures;312
32.3.2;25.3.2 Calculation of Total Resistance and Current Distribution in the 3D-Printed Conductive Lattice;315
32.4;25.4 Conclusions;318
32.5;References;319



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.