Kovalev / Sukhanov / Tarassov | Proceedings of the Fourth International Scientific Conference "Intelligent Information Technologies for Industry" (IITI'19) | Buch | 978-3-030-50096-2 | sack.de

Buch, Englisch, Band 1156, 709 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1083 g

Reihe: Advances in Intelligent Systems and Computing

Kovalev / Sukhanov / Tarassov

Proceedings of the Fourth International Scientific Conference "Intelligent Information Technologies for Industry" (IITI'19)


1. Auflage 2020
ISBN: 978-3-030-50096-2
Verlag: Springer International Publishing

Buch, Englisch, Band 1156, 709 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1083 g

Reihe: Advances in Intelligent Systems and Computing

ISBN: 978-3-030-50096-2
Verlag: Springer International Publishing


This book gathers papers presented in the main track of IITI 2019, the Fourth International Scientific Conference on Intelligent Information Technologies for Industry, held in Ostrava–Prague, Czech Republic on December 2–7, 2019. The conference was jointly organized by Rostov State Transport University (Russia) and VŠB – Technical University of Ostrava (Czech Republic) with the participation of the Russian Association for Artificial Intelligence (RAAI). 

IITI 2019 was devoted to practical models and industrial applications of intelligent information systems. Though chiefly intended to promote the implementation of advanced information technologies in various industries, topics such as the state of the art in intelligent systems and soft computing were also discussed.

Kovalev / Sukhanov / Tarassov Proceedings of the Fourth International Scientific Conference "Intelligent Information Technologies for Industry" (IITI'19) jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Neural networks.- Adaptive Diagnosis Model of Dempster-Shafer Based on Recurrent Neural-Fuzzy Network.- The method of clearing printed and handwritten texts from noise.- Interval Signs Enlargement Algorithm in the Classication Problem of Biomedical Signals.- Age and Gender Recognition on Imbalanced Dataset of Face Images with Deep Learning.- A Complex Approach to the Data Labeling E-ciency Improvement.- Automation of Musical Compositions Synthesis Process Based on Neural Networks.- Convolutional Neural Network Application for Analysis of Fundus Images.- Approximation Methods for Monte Carlo Tree Search.- Labor intensity evaluation technique in software development process based on neural networks.- An Analysis of Convolutional Neural Network for Fashion Images Classication (Fashion-MNIST).- Multiagent Systems.- Implementation of the real-time intelligent system based on theintegration approach.- Agent-based situational modeling and identication technological systems in conditions of uncertainty.- Features of Data Warehouse Support Based on a Search Agent and an Evolutionary Model for Innovation Information Selection.- Multi-Agent System of Knowledge Representation and Processing.- The Technique of Data Analysis Tasks Distribution in the Fog-Computing Environment.- Non-Classical Logic.- Model of the Operating Device with a Tunable Structure for the Implementation of the Accelerated Deductive Inference Method.- A Model Checking Based Approach for Verication of Attribute-Based Access Control Policies in Cloud Infrastructures..- Detection of anomalous situations in an unforeseen increase in the duration of inference step of the agent in hard real time.- Bayesian Networks and Trust Networks, Fuzzy-Stocastical Modelling.- Protection System for a Group of Robots Based on the Detection of Anomalous Behavior.- Employees' social graph analysis: a model of detection the most criticality trajectories of the social engineering attack's spread.- An approach to quantication of relationship types between users based on the frequency of combinations of non-numeric evaluations.- Algebraic Bayesian networks: parallel algorithms for maintaining local consistency.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.