Buch, Deutsch, 372 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 740 g
Signal - und Mustererkennung, Parameter- und Signalschätzung
Buch, Deutsch, 372 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 740 g
ISBN: 978-3-642-15953-4
Verlag: Springer
Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfährt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten Überblick über die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.
Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschätzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden berücksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.
Die Parameterschätzung behandelt neben Bayes- und Maximum-Likelihood-Ansätzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschätzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erläutert.
Geeignet für Studierende und für Ingenieure in der Praxis.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Detektion und Estimation.- 2. Grundbegriffe der Statistik.- 3. Signaldarstellung durch Vektoren.- 4. Signal- und Mustererkennung.- 5. Systeme für die Signal- und Mustererkennung.- 6. Parameterschätzung (Estimation).- 7. Lineare Parameterschätzsysteme.- 8. Wiener-Filter.- 9. Kalman-Filter.- Literatur- und Sachverzeichnis.