A Basic Course Using R
Buch, Englisch, 529 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 980 g
ISBN: 978-981-15-9002-3
Verlag: Springer Nature Singapore
Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts.
The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators andcarrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book.The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Chapter 1: Introduction.- Chapter 2: Consistency of an Estimator.- Chapter 3: Consistent and Asymptotically Normal Estimators.- Chapter 4: CAN Estimators in Exponential and Cramer Families.- Chapter 5: Large Sample Test Procedures.- Chapter 6: Goodness of Fit Test and Tests for Contingency Tables.- Chapter 7: Solutions to Conceptual Exercises.