Buch, Englisch, 486 Seiten, Format (B × H): 174 mm x 246 mm, Gewicht: 453 g
A Conceptual Overview
Buch, Englisch, 486 Seiten, Format (B × H): 174 mm x 246 mm, Gewicht: 453 g
ISBN: 978-1-032-28842-0
Verlag: Taylor & Francis
The newer research areas in pharmaceutical sciences, particularly molecular modeling and simulations, prompted a more efficient drug discovery process. Informatics integrated with pharmaceutical sciences (cheminformatics and bioinformatics) became an essential component of drug research. Drug informatics such as genomics and proteomics assists in the Rational Drug Design (RDD). This emerging discipline is known as “Computer-Aided Drug Design" (CADD), which has profound application in RDD. The advanced and adequate practice in drug design informatics is essential for pharmacy graduates. Hence, a companion for acquiring knowledge on these concepts is vital. The students of B. Pharmacy, M. Pharmacy (Pharmaceutical Chemistry, Pharmacology, and Pharmaceutics), biotechnology, biomedical engineering and other interdisciplinary fields may find this book as a reference guide.
The salient features of this book are:
• Systematic and simple approach
• Emphasis on traditional and modern drug design strategies
• Comprehensive coverage for the current advances in the drug design
• Experimental section to ensure hands-on-experience
Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Zielgruppe
Postgraduate
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Pharmakologie, Toxikologie
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Naturwissenschaften Biowissenschaften Biochemie (nichtmedizinisch)
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Pharmazie
- Naturwissenschaften Biowissenschaften Molekularbiologie
Weitere Infos & Material
1. Drug Discovery Informatics 2. Receptors 3. Molecular Biology 4. Drug Discovery and Development 5. Quantitative – Structure Activity Relationship (QSAR) 6. Molecular Modeling 7. Virtual Screening 8. Molecular Docking 9. Sequence Analysis 10. Pairwise Sequence Alignment (PSA) 11. Molecular Evolution, Multiple Sequence Alignment (MSA) and Phylogenetic Analysis 12. Gene Prediction, Hidden Markov Model and Motif Identification 13. Structure Prediction




