Lammering / Gabbert / Sinapius | Lamb-Wave Based Structural Health Monitoring in Polymer Composites | E-Book | www.sack.de
E-Book

E-Book, Englisch, 476 Seiten

Reihe: Research Topics in Aerospace

Lammering / Gabbert / Sinapius Lamb-Wave Based Structural Health Monitoring in Polymer Composites


1. Auflage 2018
ISBN: 978-3-319-49715-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 476 Seiten

Reihe: Research Topics in Aerospace

ISBN: 978-3-319-49715-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book focuses especially on the application of SHM technology to thin walled structural systems made from carbon fiber reinforced plastics. Here, guided elastic waves (Lamb-waves) show an excellent sensitivity to structural damages so that they are in the center of this book. It is divided into 4 sections dealing with analytical, numerical and experimental fundamentals, and subsequently with Lamb-wave propagation in fiber reinforced composites, SHM-systems and signal processing. The book is designed for engineering students as well as for researchers in the field of structural health monitoring and for users of this technology.

Lammering / Gabbert / Sinapius Lamb-Wave Based Structural Health Monitoring in Polymer Composites jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Part I Introduction;16
3.1;1 Motivation;17
3.1.1;1.1 Why Structural Health Monitoring?;17
3.1.2;1.2 What Should a SHM System Be Capable of?;19
3.1.3;1.3 What is the Foundation of the SHM Research Presented?;19
3.1.4;1.4 What Are the Challenges?;22
3.1.5;References;23
3.2;2 Objectives;24
4;Part II Foundations;27
4.1;3 Wave Propagation in Elastic Solids: An Analytical Approach;28
4.1.1;3.1 Introduction;28
4.1.2;3.2 Isotropic Solids;30
4.1.2.1;3.2.1 Lamé–Navier Equations;30
4.1.2.2;3.2.2 Waves in Infinite Solids;30
4.1.2.3;3.2.3 Waves in Thin-Walled Solids;31
4.1.2.3.1;3.2.3.1 Stress Boundary Conditions;35
4.1.2.3.2;3.2.3.2 Rayleigh–Lamb Wave Equation;36
4.1.2.3.3;3.2.3.3 Determination of the Displacement Field;37
4.1.2.3.4;3.2.3.4 Group Velocity;38
4.1.3;3.3 Anisotropic Solids;39
4.1.3.1;3.3.1 General Fundamentals;39
4.1.3.2;3.3.2 Wave Propagation Without Decoupling of Lamb Waves and Shear Horizontal Waves;41
4.1.3.2.1;Dispersion Relation;45
4.1.3.3;3.3.3 Wave Propagation with Decoupling of Lamb Waves and Shear Horizontal Waves;46
4.1.3.3.1;3.3.3.1 Dispersion Relation;49
4.1.4;3.4 Layered Anisotropic Solids;51
4.1.4.1;3.4.1 Transfer-Matrix Method;52
4.1.4.1.1;Separation of the Symmetric and Antisymmetric Wave Modes;55
4.1.4.2;3.4.2 Global-Matrix Method;58
4.1.4.2.1;Separation of the Symmetric and Antisymmetric Wave Modes;60
4.1.4.3;3.4.3 Stiffness-Matrix Method;60
4.1.4.3.1;Dispersion of a Quasi-Isotropic Specimen;63
4.1.4.3.2;3.4.3.1 Summary;64
4.1.5;Appendix 1: Characteristic Polynomial of the Christoffel Equation;65
4.1.6;Appendix 2: Summary of Stresses and Displacements of a Single Anisotropic Layer in a System of Equations;66
4.1.7;Appendix 3: Separated Dispersion Relations for the Symmetric and Antisymmetric Wave Modes;69
4.1.8;References;72
4.2;4 Fundamental Principles of the Finite Element Method;74
4.2.1;4.1 Governing Equations;74
4.2.2;4.2 Constitutive Equations;76
4.2.3;4.3 Weak Form of the Equations of Motion;77
4.2.4;4.4 Finite Element Equations;79
4.2.5;4.5 h-Version of the Finite Element Method;86
4.2.6;4.6 Time-Integration Methods;87
4.2.6.1;4.6.1 Explicit Time Integration: Central Difference Method;88
4.2.6.2;4.6.2 Implicit Time Integration: Newmark Method;90
4.2.6.3;4.6.3 Mass Lumping Techniques;93
4.2.6.3.1;4.6.3.1 Nodal Quadrature Technique;93
4.2.6.3.2;4.6.3.2 Row Sum Technique;94
4.2.6.3.3;4.6.3.3 Diagonal Scaling: HRZ Lumping Technique;95
4.2.7;4.7 Geometry Approximation;95
4.2.7.1;4.7.1 Subparametric Mapping;96
4.2.7.2;4.7.2 Isoparametric Mapping;97
4.2.7.3;4.7.3 Superparametric Mapping;98
4.2.7.3.1;4.7.3.1 Blending Function Method;98
4.2.8;References;100
4.3;5 Experimental Methods;102
4.3.1;5.1 Requirements for a Measurement System for High-Resolution Wave Field Recording of Lamb Waves;102
4.3.1.1;5.1.1 Measurement Principle;103
4.3.1.2;5.1.2 Flexibility;104
4.3.1.3;5.1.3 Speed;104
4.3.2;5.2 Ultrasonic Scanning Technique;104
4.3.3;5.3 Imaging Methods;106
4.3.4;5.4 3D Laser Vibrometry;108
4.3.4.1;5.4.1 Description of the Measurement Platform;108
4.3.4.2;5.4.2 Determining the Three-Dimensional Displacement;111
4.3.4.3;5.4.3 Sensitivity of In-Plane Displacement Measurements;114
4.3.5;5.5 Conclusion;121
4.3.6;References;122
5;Part III Efficient Numerical Methods for Wave Propagation Analysis;123
5.1;References;124
5.2;6 Higher Order Finite Element Methods;126
5.2.1;6.1 Higher Order Finite Element Methods: One-Dimensional Case;126
5.2.1.1;6.1.1 p-Version of the Finite Element Method;127
5.2.1.2;6.1.2 The Spectral Element Method;129
5.2.1.3;6.1.3 The Isogeometric Analysis;133
5.2.1.3.1;6.1.3.1 B-Spline Curve;133
5.2.1.3.2;6.1.3.2 Nonuniform Rational B-Spline Curve;134
5.2.2;6.2 Comparison of the Properties of Different Higher Order Finite Element Approaches;136
5.2.2.1;6.2.1 Hierarchic Basis Functions;136
5.2.2.2;6.2.2 Nodal Basis Functions;137
5.2.3;6.3 Multivariate Basis Functions;138
5.2.4;6.4 Benchmark Problems;138
5.2.4.1;6.4.1 p-FEM: Modal Analysis of a Three-Dimensional Piezoelectric Disc;139
5.2.4.1.1;6.4.1.1 Short-Circuited Electrodes;140
5.2.4.1.2;6.4.1.2 Open Electrodes;140
5.2.4.1.3;6.4.1.3 Eigenfrequencies and Mode Shapes of a Circular Disc;141
5.2.4.2;6.4.2 Spectral Element Method: Wave Propagation Analysis in a Two-Dimensional Porous Plate;144
5.2.4.3;6.4.3 Isogeometric Analysis: Wave Propagation Analysis in a Three-Dimensional Perforated Plate;151
5.2.5;6.5 Convergence Studies;153
5.2.5.1;6.5.1 Numerical Model;153
5.2.5.2;6.5.2 Signal Analysis;155
5.2.5.3;6.5.3 Polynomial Degree in x1;155
5.2.5.4;6.5.4 Polynomial Degree in x2;156
5.2.6;6.6 Industrial Applications;160
5.2.6.1;6.6.1 Stiffened Composite Plate;160
5.2.6.2;6.6.2 Rotor Blade of a Wind Turbine;163
5.2.7;References;165
5.3;7 Hybrid Simulation Methods: Combining Finite Element Methods and Analytical Solutions;169
5.3.1;7.1 The Semi-Analytical Finite Element Method;169
5.3.1.1;7.1.1 Motivation;170
5.3.1.2;7.1.2 Theoretical Principles;170
5.3.1.3;7.1.3 Plate with Infinite Dimensions;174
5.3.1.4;7.1.4 Dispersion Curves for Undamped Media;176
5.3.1.4.1;7.1.4.1 Phase and Group Velocities of Guided Waves;178
5.3.1.4.2;7.1.4.2 Verification;179
5.3.1.5;7.1.5 Interaction of Guided Waves with Perturbations;182
5.3.1.5.1;7.1.5.1 General approach;182
5.3.1.5.2;7.1.5.2 Verification;184
5.3.1.6;7.1.6 Force Response Analysis;187
5.3.1.6.1;7.1.6.1 General approach;187
5.3.1.6.2;7.1.6.2 Verification;188
5.3.1.7;7.1.7 Summary;190
5.3.2;7.2 Coupling of Analytical Solutions and the Spectral Element Method in the Frequency Domain;190
5.3.2.1;7.2.1 Motivation;190
5.3.2.2;7.2.2 Definition of the Problem;191
5.3.2.3;7.2.3 Analytical Solution to the Wave Propagation Problem in Isotropic Plates;193
5.3.2.3.1;7.2.3.1 Analytical Approach;193
5.3.2.3.2;7.2.3.2 Two-Dimensional Problem;194
5.3.2.4;7.2.4 Coupling Boundary Conditions;199
5.3.2.5;7.2.5 Numerical Results;200
5.3.3;References;203
5.4;8 Damping Boundary Conditions for a Reduced Solution Domain Size and Effective Numerical Analysis of HeterogeneousWaveguides;207
5.4.1;8.1 Objective;207
5.4.2;8.2 Non-reflecting Boundary Conditions;209
5.4.2.1;8.2.1 Basic Principles;210
5.4.2.1.1;8.2.1.1 Damping Factor;212
5.4.2.1.2;8.2.1.2 Direction of Dashpot Elements;213
5.4.2.1.3;8.2.1.3 Number of Dashpot Element Layers;214
5.4.2.2;8.2.2 Numerical Example;215
5.4.3;8.3 Parametric Studies of Wave Propagation in Cellular Materials;217
5.4.3.1;8.3.1 Sandwich Panel with a Foam Core;217
5.4.3.1.1;8.3.1.1 Numerical Model;217
5.4.3.1.2;8.3.1.2 Influence of the Excitation Frequency;219
5.4.3.1.3;8.3.1.3 Influence of Geometrical Dimensions;219
5.4.3.2;8.3.2 Sandwich Panel with a Honeycomb Core;220
5.4.3.2.1;8.3.2.1 Numerical Model;220
5.4.3.2.2;8.3.2.2 Influence of the Excitation Frequency;221
5.4.3.2.3;8.3.2.3 Influence of Geometrical Dimensions;221
5.4.4;References;223
5.5;9 The Finite Cell Method: A Higher Order Fictitious Domain Approach for Wave Propagation Analysis in Heterogeneous Structures;225
5.5.1;9.1 Motivation;225
5.5.2;9.2 Fictitious Domain Concept;228
5.5.3;9.3 Finite Cell Equations;230
5.5.4;9.4 Numerical Integration;232
5.5.4.1;9.4.1 Adaptive Quadrature Scheme;232
5.5.4.2;9.4.2 Improved Integration Algorithms;235
5.5.5;9.5 Geometry Description;237
5.5.5.1;9.5.1 Implicit Functions;237
5.5.5.2;9.5.2 Boundary Representation (B-Rep);238
5.5.5.3;9.5.3 CT-Scan;238
5.5.6;9.6 Numerical Results: Wave Propagation Analysis in a Two-Dimensional Porous Plate;239
5.5.7;9.7 Note on the Extension to Unstructured Discretizations;244
5.5.8;References;245
5.6;10 A Minimal Model for Fast Approximation of Lamb Wave Propagation in Complex Aircraft Parts;248
5.6.1;10.1 Lamb Wave Simulation and Its Applications;248
5.6.2;10.2 Minimal Model;250
5.6.2.1;10.2.1 Interaction of Lamb Waves with Discontinuities;251
5.6.2.2;10.2.2 Ray Tracing;253
5.6.2.3;10.2.3 Signal Synthesis;256
5.6.3;10.3 Experimental Results and Comparison;258
5.6.3.1;10.3.1 Aluminum Plate;259
5.6.3.2;10.3.2 Aluminum Plate with Cutout;262
5.6.4;10.4 Discussion;264
5.6.5;10.5 Conclusion;266
5.6.6;References;266
6;Part IV Continuous Mode Conversion;269
6.1;11 Continuous Mode Conversion in Experimental Observations;270
6.1.1;11.1 Mode Conversion in Polymer Composites;270
6.1.2;11.2 Occurrence and Characteristics of Continuous ModeConversion;272
6.1.2.1;11.2.1 CFRP Plates Made of Unidirectional Layers;272
6.1.2.2;11.2.2 CFRP Plates Made of Woven Layers;273
6.1.3;11.3 Physical Reasons of Continuous Mode Conversion in Woven Layers;274
6.1.3.1;11.3.1 Experimental Tensile Tests;274
6.1.3.2;11.3.2 Finite Element Modeling;276
6.1.3.3;11.3.3 Numerical Tensile Tests;277
6.1.3.4;11.3.4 Lamb Wave Simulation;278
6.1.3.5;11.3.5 Frequency Dependence of Coupling-Induced Mode Conversion;279
6.1.4;11.4 Conclusion;281
6.1.5;References;281
6.2;12 Material Modeling of Polymer Composites for Numerical Investigations of Continuous Mode Conversion;283
6.2.1;12.1 Analysis of the Wave Behavior in Simplified Models with Reference to the Continuous Mode Conversion;283
6.2.1.1;12.1.1 Aluminum Plates with Changes in Cross Section;285
6.2.1.1.1;12.1.1.1 Plate with Obstacles;285
6.2.1.1.2;12.1.1.2 Plate with Notches;287
6.2.1.1.3;12.1.1.3 Intermediate Results;289
6.2.1.2;12.1.2 Conventional Material Modeling of CFRP;289
6.2.1.2.1;12.1.2.1 General Rule of Mixture;290
6.2.1.2.2;12.1.2.2 Semiempirical Homogenization Method of Halpin and Tsai;291
6.2.1.3;12.1.3 Fiber–Matrix Models;291
6.2.1.4;12.1.4 Intermediate Results;294
6.2.2;12.2 Numerical Realization of the Continuous Mode ConversionEffect;295
6.2.2.1;12.2.1 Enhanced FE-Material Modeling of UD-Layers;295
6.2.2.2;12.2.2 Wave Propagation in UD-Layers Using the Enhanced FE-Material Modeling;297
6.2.3;12.3 Conclusion;299
6.2.4;References;301
7;Part V Signal Processing;302
7.1;13 Localization of Damaging Events and Damage in Anisotropic Plates by Migration Technique;303
7.1.1;13.1 Impact Localization;303
7.1.1.1;13.1.1 Migration Method for Isotropic Materials;303
7.1.1.2;13.1.2 Enhanced Migration Method for AnisotropicMaterials;305
7.1.1.2.1;13.1.2.1 Determination of the Wave Velocity;306
7.1.1.2.2;13.1.2.2 Determination by Experimental Data;306
7.1.1.2.3;13.1.2.3 Determination by Material Data;306
7.1.1.2.4;13.1.2.4 Parametrization of Wave Propagation;309
7.1.1.2.5;13.1.2.5 Formulation of the Enhanced Migration Method for Anisotropic Material;309
7.1.1.3;13.1.3 Solution Procedure;310
7.1.2;13.2 Damage Localization;311
7.1.3;13.3 Experimental Verification;312
7.1.3.1;13.3.1 Impact Localization;312
7.1.3.1.1;13.3.1.1 Experimental Setup;312
7.1.3.1.2;13.3.1.2 Shape of the Wave Front;313
7.1.3.1.3;13.3.1.3 Experimental Results and Data Analysis;314
7.1.3.1.4;13.3.1.4 Signal Analysis;314
7.1.3.1.5;13.3.1.5 Optimization;318
7.1.3.1.6;13.3.1.6 Results;318
7.1.3.1.7;13.3.1.7 Discussion of the Results;319
7.1.3.1.8;13.3.1.8 Influence of Time Resolution;321
7.1.3.1.9;13.3.1.9 Influence of the Wavelet Transform;321
7.1.3.1.10;13.3.1.10 Influence of the Reference Signal;322
7.1.3.1.11;13.3.1.11 Influence of the Number of Active Sensors;323
7.1.3.1.12;13.3.1.12 Quality of Results;324
7.1.3.2;13.3.2 Defect Localization;325
7.1.3.2.1;13.3.2.1 Experimental Setup;325
7.1.3.2.2;13.3.2.2 Determination of the Wave Propagation Pattern;327
7.1.3.2.3;13.3.2.3 Experimental Results and Evaluation;327
7.1.3.2.4;13.3.2.4 Results;328
7.1.3.2.5;13.3.2.5 Discussion of the Results;328
7.1.4;References;331
7.2;14 Time-of-Flight Calculation in Complex Structures;333
7.2.1;14.1 Requirements for Time-of-Flight Calculation;334
7.2.2;14.2 Algorithms for Time-of-Flight Calculation;336
7.2.2.1;14.2.1 Raytracing;336
7.2.2.2;14.2.2 Dijkstra Algorithm;337
7.2.2.3;14.2.3 Path Calculation in Segmented Areas;338
7.2.2.4;14.2.4 Bellman-Ford Algorithm;338
7.2.2.5;14.2.5 Floyd-Warshall Algorithm;339
7.2.2.6;14.2.6 Front Propagation Algorithms;339
7.2.3;14.3 Time-of-Flight Calculation for Lamb Waves in Complex Structures;340
7.2.3.1;14.3.1 Discretization of the Structure;341
7.2.3.2;14.3.2 Considerations for the Algorithm for the Time-of-Flight Calculation;345
7.2.3.2.1;14.3.2.1 Efficiency;345
7.2.3.2.2;14.3.2.2 Memory;345
7.2.3.2.3;14.3.2.3 Parallel Implementation;346
7.2.3.2.4;14.3.2.4 Classification of Nodes;346
7.2.3.2.5;14.3.2.5 Covered Nodes per Iteration;347
7.2.3.2.6;14.3.2.6 Number of Initial Sources;347
7.2.3.3;14.3.3 Algorithm for Time-of-Flight Calculation;347
7.2.4;14.4 Influences on the Time-of-Flight Calculation;349
7.2.4.1;14.4.1 Discretization;349
7.2.4.2;14.4.2 Non-isotropic Material Properties Inside the Elements;354
7.2.4.3;14.4.3 Non-convex Velocity Distributions Insidethe Elements;356
7.2.4.4;14.4.4 Subsequent Determination of Fastest Paths;357
7.2.5;References;358
7.3;15 The Determination of Dispersion Curves from Measurements by the Matrix Pencil Method;360
7.3.1;15.1 Introduction;360
7.3.2;15.2 Dispersion Relations via Mode Decomposition in the Wavenumber Domain;361
7.3.3;15.3 The Matrix Pencil Method;363
7.3.4;15.4 Experimental Setup;365
7.3.5;15.5 From Laser Vibrometer Data to Matrix Pencil Data;366
7.3.6;15.6 Numerical Results and Detection of BackwardPropagating Waves;368
7.3.7;15.7 Conclusions;372
7.3.8;References;373
7.4;16 Damage Identification by Dynamic Load Monitoring;374
7.4.1;16.1 Introduction;375
7.4.2;16.2 Dynamic Load Monitoring as a Minimization Problem;377
7.4.3;16.3 Numerical Solution of the Tikhonov Minimization Problem;386
7.4.4;16.4 Numerical Results;391
7.4.5;References;397
8;Part VI SHM: Systems;399
8.1;17 Mode Selective Actuator-Sensor-Systems;401
8.1.1;17.1 Introduction;401
8.1.2;17.2 Analytical Model for Mode SelectiveActuator-Sensor-Systems;406
8.1.2.1;17.2.1 Mode Tuning: 2D Problem;406
8.1.2.2;17.2.2 Acoustic Wave Field: 3D Problem;413
8.1.3;17.3 Experimental Verification of Mode Selective Actuator-Sensor-Systems;418
8.1.3.1;17.3.1 Manufacturing Technologies of Mode Selective Transducers;418
8.1.3.2;17.3.2 Experimental Setup;421
8.1.3.3;17.3.3 Experimental Results Regarding Mode Tuning;422
8.1.3.4;17.3.4 Experimental Results Regarding Acoustic Wave Field;425
8.1.4;Appendix;427
8.1.5;References;429
8.2;18 Virtual Sensors for SHM;431
8.2.1;18.1 Introduction;431
8.2.2;18.2 Leaky Guided Waves;432
8.2.3;18.3 Displacement Ratios;433
8.2.4;18.4 Adaption of Wave Radiation;436
8.2.5;18.5 Sensor Model;437
8.2.6;18.6 Experimental Validation;439
8.2.7;References;441
8.3;19 Lamb Wave Generation, Propagation, and Interactions in CFRP Plates;442
8.3.1;19.1 Experimental Setup;442
8.3.2;19.2 Characterization of Piezo-Actuators and Their Wave Fields;443
8.3.3;19.3 Velocity and Attenuation Measurement of Lamb Waves;447
8.3.3.1;19.3.1 Methods of Dispersion Curves Determination;447
8.3.3.2;19.3.2 Comparison of Lamb Wave Velocities in DifferentPlates;448
8.3.4;19.4 Attenuation of Lamb Waves;450
8.3.5;19.5 Interactions with Inhomogeneities;452
8.3.5.1;19.5.1 Non-Mode Converting Inhomogeneities;452
8.3.5.2;19.5.2 Mode Converting Inhomogeneities;452
8.3.5.2.1;19.5.2.1 Interactions with Asymmetric Wall Thickness Changes;452
8.3.5.2.2;19.5.2.2 Interactions with Stringers;454
8.3.5.2.3;19.5.2.3 Interactions with Stringer Defects;456
8.3.5.2.4;19.5.2.4 Continuous Mode Conversion;457
8.3.6;19.6 Conclusion;458
8.3.7;References;459
8.4;20 Structural Health Monitoring on the SARISTU Full Scale Door Surround Structure;461
8.4.1;20.1 Introduction;461
8.4.2;20.2 Integration of a SHM Network in the Structure;462
8.4.3;20.3 A Probability-Based Diagnostic Imaging Approach;464
8.4.4;20.4 Damage Assessment;465
8.4.5;20.5 Conclusion;469
8.4.6;References;470
9;Index;472



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.