Buch, Englisch, Band 69, 349 Seiten, PB, Format (B × H): 170 mm x 240 mm
Reihe: Advances in Information Systems and Management Science
Guiding the Implementation of Machine Learning Algorithms
Buch, Englisch, Band 69, 349 Seiten, PB, Format (B × H): 170 mm x 240 mm
Reihe: Advances in Information Systems and Management Science
ISBN: 978-3-8325-5630-3
Verlag: Logos
World-wide trends such as globalization, demographic shifts, increased customer demands, and shorter product lifecycles present a significant challenge to the road freight transport industry: meeting the growing road freight transport demand economically while striving for sustainability.
Artificial intelligence, particularly machine learning, is expected to empower transport planners to incorporate more information and react quicker to the fast-changing decision environment. Hence, using machine learning can lead to more efficient and effective transport planning. However, despite the promising prospects of machine learning in road freight transport planning, both academia and industry struggle to identify and implement suitable use cases to gain a competitive edge.
In her dissertation, Sandra Lechtenberg explores how machine learning can enhance decision-making in operational and real-time road freight transport planning. She outlines an implementation guideline, which involves identifying decision tasks in planning processes, assessing their suitability for machine learning, and proposing steps to follow when implementing respective algorithms.
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Einkauf, Logistik, Supply-Chain-Management
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Verkehrstechnik | Transportgewerbe Güterkraftverkehr, Spedition
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Transport- und Verkehrswirtschaft
- Technische Wissenschaften Verkehrstechnik | Transportgewerbe Intelligente & automatisierte Transportsysteme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen