Lee / Chang / Lin | Technologies and Applications of Artificial Intelligence | Buch | 978-981-97-1710-1 | www.sack.de

Buch, Englisch, 395 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications in Computer and Information Science

Lee / Chang / Lin

Technologies and Applications of Artificial Intelligence

28th International Conference, TAAI 2023, Yunlin, Taiwan, December 1-2, 2023, Proceedings, Part I
2024
ISBN: 978-981-97-1710-1
Verlag: Springer Nature Singapore

28th International Conference, TAAI 2023, Yunlin, Taiwan, December 1-2, 2023, Proceedings, Part I

Buch, Englisch, 395 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-97-1710-1
Verlag: Springer Nature Singapore


This book constitutes the proceedings of the 28th International Conference on Technologies and Applications of Artificial Intelligence, TAAI 2023, which was held in Yunlin, Taiwan, during December 1–2, 2023. `
The 35 full papers and 12 short papers included in this book were carefully reviewed and selected from 193 submissions. The TAAI 2023 provides a platform for experts and scholars from domestic and international universities, research units, and industries to exchange AI technologies and application results.
Lee / Chang / Lin Technologies and Applications of Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Proposal of Personal Value-Based User Modeling Using Latent Factors.- Artificial Intelligence Model Interpreting Tools: SHAP, Lime, And Anchor Implementation in CNN Model for Hand Gestures Recognition.- Proposal of Finding Potentially Valid Menus from Recipe Dataset Using Knowledge Graph Embedding.- Strategic pairwise selection for labeling high-risk action from video-based data.- Modeling Transitions of Inter-Segment Patterns for Time Series Representation.- From SMOTE to Mixup for Deep Imbalanced Classification.- Assessing personality factors for recommendation systems of learning method.- IMF-PSO: A Particle Swarm Optimization Algorithm for Feature Selection in Classification.- Integration of Convolutional Neural Networks and Autoencoding for Generating Reconfigurable Intelligent Surfaces.- Comparison of Vocabulary Features among Multiple Data Sources for Constructing a Knowledge Base on Disaster Information.- An Improved Algorithm with Azimuth Clustering for Detecting Turning Regions on GPS Trajectories.- A Pilot Study on AI-Assisted Code Generation with Large Language Models for Software Engineering.- A System to Display the Intention Behind Shogi AI's Move as a Series of Reading Sequences.- Viewing on Google Maps Using Yolov8 for Damaged Traffic Signs Detection.- Neural Networks to Infer Traditional Chinese Medicine Prescriptions from Indications.- Image Pseudo Label Consistency Exploitation for Semi-Supervised Pathological Tissue Segmentation.- Real-Time Prediction of Acute Kidney Injury in the Intensive Care Unit Using EDGE-AI Platform.- Facial Nerve Disorder Rehabilitation via Generative Adversarial Network.- Deep Learning for Journalism: The Bibliometric Analysis of Deep Learning for News Production in the Artificial Intelligence Era.- Blockchain-based Diagnostic Certificate System with Privacy Protection.- Exploiting Style Transfer and Semantic Segmentationto Facilitate Infrared and Visible Image Fusion.- Multi-action Prediction using An Iterative Masking Approach with Class Activation Mapping.- GraphSAGE-Based Spammer Detection Using Social Attribute Relationship.- Lay Summarization of Biomedical Documents with Discourse Structure-based Prompt Tuning.- An Empirical Analysis of Gumbel MuZero on Stochastic and Deterministic Einstein Würfelt Nicht!.- Factor Analyses on Positive and Negative Evaluations of Games against Go Programs.- Host's Assistant: Leveraging Graph Neural Networks for Daily Room Rate Prediction on Online Accommodation Site.- Impression Effect of Using Politeness Theory by Educational-Support-Robot that Suggest the Number of Problems by Real-Time Dialogue System.- Effect of a learning support model that provides autonomous learning support in a teacher-type robot based on the learner’s perplexion state.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.