Buch, Englisch, 340 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 598 g
Reihe: Universitext
Buch, Englisch, 340 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 598 g
Reihe: Universitext
ISBN: 978-3-031-66877-7
Verlag: Springer Nature Switzerland
This textbook presents the spectral theory of self-adjoint operators on Hilbert space and its applications in quantum mechanics. Based on a course taught by the author in Paris, the book not only covers the mathematical theory but also provides its physical interpretation, offering an accessible introduction to quantum mechanics for students with a background in mathematics. The presentation incorporates numerous physical examples to illustrate the abstract theory. The final two chapters present recent findings on Schrödinger’s equation for systems of particles.
While primarily designed for graduate courses, the book can also serve as a valuable introduction to the subject for more advanced readers. It requires no prior knowledge of physics, assuming only a graduate-level understanding of mathematical analysis from the reader.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Quantenphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
1 Introduction to quantum mechanics: the hydrogen atom.- 2 Self-adjointness.- 3 Self-adjointness criteria: Rellich, Kato & Friedrichs.- 4 Spectral theorem and functional calculus.- 5 Spectrum of self-adjoint operators.- 6 -particle systems, atoms, molecules.- 7 Periodic Schrödinger operators, electronic properties of materials.- Appendix A: Sobolev spaces.- Appendix B: Problems.