Li | Embedded Artificial Intelligence | Buch | 978-981-97-5037-5 | sack.de

Buch, Englisch, 260 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g

Li

Embedded Artificial Intelligence

Principles, Platforms and Practices
2024
ISBN: 978-981-97-5037-5
Verlag: Springer Nature Singapore

Principles, Platforms and Practices

Buch, Englisch, 260 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g

ISBN: 978-981-97-5037-5
Verlag: Springer Nature Singapore


This book focuses on the emerging topic of embedded artificial intelligence and provides a systematic summary of its principles, platforms, and practices. In the section on principles, it analyzes three main approaches for implementing embedded artificial intelligence: cloud computing mode, local mode, and local-cloud collaborative mode. The book identifies five essential components for implementing embedded artificial intelligence: embedded AI accelerator chips, lightweight neural network algorithms, model compression techniques, compiler optimization techniques, and multi-level cascaded application frameworks. The platform section introduces mainstream embedded AI accelerator chips and software frameworks currently used in the industry. The practical part outlines the development process of embedded artificial intelligence and showcases real-world application examples with accompanying code.

As a comprehensive guide to the emerging field of embedded artificial intelligence, the book offers rich and in-depth content, a clear and logical structure, and a balanced approach to both theoretical analysis and practical applications. It provides significant reference value and can serve as an introductory and reference guide for researchers, scholars, students, engineers, and professionals interested in studying and implementing embedded artificial intelligence.

Li Embedded Artificial Intelligence jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


PART I. PRINCIPLES.- Chapter 1. Embedded Artificial Intelligence.- Chapter 2. Principle of Embedded AI Chips.- Chapter 3. Lightweight Neural Networks.- Chapter 4. Compression of Deep Neural Network.- Chapter 5. Framework for Embedded Neural Network Applications.- Chapter 6. Lifelong Deep Learning.- PART II. PLATFORMS.- Chapter 7. Embedded AI Accelerator Chips.- Chapter 8. Software Framework for Embedded Neural Networks.- PART III. PRACTICES.- Chapter 9. Embedded AI Development Process.- Chapter 10. Optimizing Embedded Neural Network Models.- Chapter 11. Examples of Embedded Neural Network Application.- Chapter 12. Conclusion: Intelligence in Everything.


Bin Li held chief technical positions in several Fortune 500 companies, and he earned a Master’s degree in pattern recognition and artificial intelligence from Beijing Institute of Technology. His research areas include artificial intelligence, distributed computing, and data communication. He is the first inventor of over 20 Chinese and international invention patents.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.