Li / Gao | Handbook of Micromechanics and Nanomechanics | Buch | 978-981-4411-23-3 | sack.de

Buch, Englisch, 1264 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1746 g

Li / Gao

Handbook of Micromechanics and Nanomechanics


1. Auflage 2013
ISBN: 978-981-4411-23-3
Verlag: Pan Stanford

Buch, Englisch, 1264 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1746 g

ISBN: 978-981-4411-23-3
Verlag: Pan Stanford


This book presents the latest developments and applications of micromechanics and nanomechanics. It particularly focuses on some recent applications and impact areas of micromechanics and nanomechanics that have not been discussed in traditional micromechanics and nanomechanics books on metamaterials, micromechanics of ferroelectric/piezoelectric, electromagnetic materials, micromechanics of interface, size effects and strain gradient theories, computational and experimental nanomechanics, multiscale simulations and theories, soft matter composites, and computational homogenization theory. This book covers analytical, experimental, as well as computational and numerical approaches in depth.

Li / Gao Handbook of Micromechanics and Nanomechanics jetzt bestellen!

Zielgruppe


Academic and Postgraduate


Autoren/Hrsg.


Weitere Infos & Material


Microdynamics of Phononic Materials. Micromechanics of Elastic Metamaterials. Phase Field Approach Micromechanics in Ferroelectric Crystals. Atomic Structure of 180° Ferroelectric Domain Walls in PbTiO3. Micromechanics-based Constitutive Modeling of Chain-Structured Ferromagnetic Particulate Composites. Nonlinear Dynamic Electromechanics in Functionally Graded Piezoelectric Materials. Mechano-electrochemical Mixture Theories for the Multiphase Fluid–Infiltrated Poroelastic Media. Micromechanics of Nanocomposites with Interface Energy Effects. A Surface/Interface Micro-elasticity Formulation Based on Finite-Size Representative Volume Element. Continuum-Based Modeling of Size Effects in Micro- and Nanostructured Materials. Strain Gradient Solutions of Eshelby-Type Inclusion Problems. Problems in the Theories of Couple-Stress Elasticity and Dipolar Gradient Elasticity: A Comparison. Solutions to the Periodic Eshelby Inclusion Problem. Variational Principles, Bounds, and Percolation Thresholds of Composites. Inclusion Clusters in the Archetype-Blending Continuum Theory. Microstructural Characterization of Metals Using Nanoindentation. A Multiscale Modeling of Multiple Physics. Coarse-Grained Atomistic Simulations of Dislocation and Fracture in Metallic Materials. Timescaling in Multiscale Mechanics of Nanowires and Nanocrystalline Materials. Modeling and Simulation of Carbon Nanotube–Based Composites and Devices. Concurrent Approach to Lattice Dynamics Based on Extended Space–Time Finite Element Method. Mechanics of Nanoporous Metals. Numerical Characterization of Nanowires. Molecular Modeling of the Microstructure of Soft Materials: Healing, Memory, and Toughness Mechanisms. Intricate Multiscale Mechanical Behavior of Natural Fish-Scale Composites. Mechanics of Random Fiber Networks. Size-Dependent Probabilistic Damage Micromechanics and Toughening Behavior of Particle-/Fiber-Reinforced Composites. Multiscale Asymptotic Expansion Formulations for Heterogeneous Slab and Column Structures with Three-Dimensional Microstructures. Computational Overlap Coupling Between Micropolar Elastic Continuum Finite Elements and Elastic Spherical Discrete Elements in One Dimension. Nonconcurrent Computational Homogenization of Nonlinear, Stochastic, and Viscoelastic Materials.


Shaofan Li, Xin-Lin Gao



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.