E-Book, Englisch, 447 Seiten
Li / Mulay Meshless Methods and Their Numerical Properties
1. Auflage 2013
ISBN: 978-1-4665-1747-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 447 Seiten
ISBN: 978-1-4665-1747-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties—including consistency, convergence, stability, and adaptivity—to help you choose the method that is best suited for your needs.
Get Guidance for Developing and Testing Meshless Methods
Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods.
Explore Engineering Applications of Meshless Methods
The book examines how meshless methods can be used to solve complex engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bed submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods.
Choose the Best Method for a Particular Problem
Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods or working on the modelling and simulation of practical engineering problems. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.
Zielgruppe
Mechanical and civil engineers involved in engineering analysis.
Autoren/Hrsg.
Weitere Infos & Material
Introduction
Formulation of Classical Meshless Methods
Introduction
Fundamentals of Meshless Methods
Common Steps of Meshless Method
Classical Meshless Methods
Summary
Recent Development of Meshless Methods
Introduction
Hermite-Cloud Method
Point Weighted Least-Squares Method
Local Kriging (LoKriging) Method
Variation of Local Point Interpolation Method (vLPIM)
Random Differential Quadrature (RDQ) Method
Summary
Convergence and Consistency Analyses
Introduction to Convergence Analysis
Development of Superconvergence Condition
Convergence Analysis
Application of RDQ Method for Solving Fixed-Fixed and Cantilever Microswitches under Nonlinear Electrostatic Loading
Introduction to Consistency Analysis of RDQ Method
Consistency Analysis of Locally Applied DQ Method
Effect of Uniform and Cosine Distributions of Virtual Nodes on Convergence of RDQ Method
Summary
Stability Analyses
Introduction
Stability Analysis of First Order Wave Equation by RDQ Method
Stability Analysis of Transient Heat Conduction Equation
Stability Analysis of the Transverse Beam Deflection Equation
Summary
Adaptive Analysis
Introduction
Error Recovery Technique in ARDQ Method
Adaptive RDQ Method
Convergence Analysis in ARDQ Method
Summary
Engineering Applications
Introduction
Application of Meshless Methods to Microelectromechanical System Problems
Application of Meshless Method in Submarine Engineering
Application of RDQ Method for 2-D Simulation of pH-Sensitive Hydrogel
Summary
Appendix A: Derivation of Characteristic Polynomial F(Z)
Appendix B: Definition of Reduced Polynomial F1(Z)
Appendix C: Derivation of Discretization Equation by Taylor Series
Appendix D: Derivation of Ratio of Successive Amplitude Reduction Values for Fixed-Fixed Beam using Explicit and Implicit Approaches
Appendix E: Source Code Development
Index




