Li | Vibration Control for Building Structures | E-Book | www.sack.de
E-Book

E-Book, Englisch, 677 Seiten

Reihe: Springer Tracts in Civil Engineering

Li Vibration Control for Building Structures

Theory and Applications
1. Auflage 2020
ISBN: 978-3-030-40790-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Applications

E-Book, Englisch, 677 Seiten

Reihe: Springer Tracts in Civil Engineering

ISBN: 978-3-030-40790-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a comprehensive introduction to the field of structural vibration reduction control, but may also be used as a reference source for more advanced topics. The content is divided into four main parts: the basic principles of structural vibration reduction control, structural vibration reduction devices, structural vibration reduction design methods, and structural vibration reduction engineering practices. As the book strikes a balance between theoretical and practical aspects, it will appeal to researchers and practicing engineers alike, as well as graduate students.

Li Vibration Control for Building Structures jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;1 Summary;16
3.1;1.1 Concept and Principle of Structural Vibration Control;17
3.1.1;1.1.1 Structure Damping Principle;18
3.1.2;1.1.2 Structure Isolation Principle;19
3.2;1.2 Classification and Basic Performance of Structural Vibration Control Technology;20
3.3;1.3 Development and Current Situation of Structural Vibration Control;21
3.4;References;24
4;Part I Basic Principle of Structural Vibration Control;26
5;2 Basic Principles of Energy Dissipation and Vibration Control;27
5.1;2.1 Passive Control;27
5.1.1;2.1.1 Motion Equation of SDOF System;27
5.1.2;2.1.2 Commonly Used Passive Energy Dissipation Dampers;31
5.1.3;2.1.3 Motion Equation of Passive Vibration Absorbing Structural System;31
5.2;2.2 Active and Semi-active Control;35
5.2.1;2.2.1 Commonly Used Active and Semi-active Control Strategies;35
5.2.2;2.2.2 Motion Equations of Active and Semi-active Vibration Absorbing Systems;37
5.2.3;2.2.3 Structural State Equation;38
5.2.4;2.2.4 Structural Active Control Algorithm;44
5.2.5;2.2.5 Structural Semi-active Control Algorithm;52
5.3;2.3 Intelligent Control;58
5.4;2.4 Hybrid Control;58
5.5;References;58
6;3 Basic Principle of Frequency Modulation Vibration Control;60
6.1;3.1 FM Mass Vibration Control;60
6.1.1;3.1.1 Motion Equation of FM Mass Vibration Control System;60
6.1.2;3.1.2 Basic Characteristics of FM Mass Vibration Control;62
6.1.3;3.1.3 Construction of FM Mass Vibration Control;68
6.2;3.2 FM Liquid Vibration Control;69
6.2.1;3.2.1 Motion Equation of FM Liquid Vibration Control System;69
6.2.2;3.2.2 Basic Characteristics of FM Liquid Vibration Control;74
6.3;References;74
7;4 Basic Principle of Structural Isolation;75
7.1;4.1 Motion Equation of Isolated Structural System;75
7.2;4.2 Basic Characteristics of Isolated Structural System;77
7.2.1;4.2.1 Response Analysis of Isolated Structural System;77
7.2.2;4.2.2 Response Characteristics of Isolated Structural System;79
7.3;4.3 Commonly Used Isolation Devices for Building Structures;81
7.3.1;4.3.1 Rubber Isolation System;82
7.3.2;4.3.2 Sliding Isolation System;84
7.3.3;4.3.3 Hybrid Isolation System;85
7.4;References;87
8;Part II Damping Devices of Building Structures;88
9;5 Viscous Fluid Damper;89
9.1;5.1 Mechanism and Characteristics of Viscous Fluid Damper;89
9.1.1;5.1.1 Types and Characteristics of Damping Medium;89
9.1.2;5.1.2 Energy Dissipation Mechanism of Viscous Fluid Damper;95
9.1.3;5.1.3 Calculation Model of Viscous Fluid Damper;109
9.2;5.2 Properties and Improvement of Viscous Fluid Materials;110
9.2.1;5.2.1 Modification of Viscous Fluid Damping Materials;110
9.2.2;5.2.2 Material Property Test of Viscous Fluid;112
9.2.3;5.2.3 Test Results and Analysis;112
9.3;5.3 Research and Development of New Viscous Fluid Damper;118
9.3.1;5.3.1 Linear Viscous Fluid Damper;118
9.3.2;5.3.2 Nonlinear Viscous Fluid Damper;123
9.3.3;5.3.3 Other Viscous Fluid Damping Devices;127
9.4;5.4 Performance Test of Viscous Fluid Damper;132
9.4.1;5.4.1 Maximum Damping Force Test;132
9.4.2;5.4.2 Regularity Test of Damping Force;133
9.4.3;5.4.3 Test of Loading Frequency Related Performance of Maximum Damping Force;133
9.4.4;5.4.4 Test of Temperature Related Performance of Maximum Damping Force;134
9.4.5;5.4.5 Pressure Maintaining Inspection;135
9.4.6;5.4.6 Fatigue Performance Test;135
9.5;References;137
10;6 Viscoelastic Damper;138
10.1;6.1 Viscoelastic Damping Mechanism and Characteristics;138
10.1.1;6.1.1 Types and Characteristics of Viscoelastic Materials;138
10.1.2;6.1.2 Calculation Model of Viscoelastic Damper;140
10.2;6.2 Properties and Improvement of Viscoelastic Materials;147
10.2.1;6.2.1 Inorganic Small Molecule Hybrid, Blending of Rubber and Plastic;147
10.2.2;6.2.2 Long Chain Polymer Blending Method;155
10.3;6.3 Research and Development of New Viscoelastic Damper;158
10.3.1;6.3.1 Laminated Viscoelastic Damper;158
10.3.2;6.3.2 Cylindrical Viscoelastic Damper;163
10.3.3;6.3.3 “5 + 4” Viscoelastic Damping Wall;167
10.4;References;169
11;7 Metal Damper;170
11.1;7.1 Mechanism and Characteristics of Metal Damping;170
11.1.1;7.1.1 Basic Principle of Metal Damper;170
11.1.2;7.1.2 Properties of Steel with Low Yield Point;172
11.1.3;7.1.3 Type and Calculation Performance of Metal Damper;176
11.2;7.2 Tension-Compression Type Metal Damper;182
11.2.1;7.2.1 Working Mechanism of Buckling Proof Brace;183
11.2.2;7.2.2 Research and Development of New Buckling Proof Support;186
11.3;7.3 Shear Type Metal Damper;193
11.3.1;7.3.1 Stress Mechanism of Unconstrained Shear Steel Plate;193
11.3.2;7.3.2 Buckling Proof Design of in-Plane Shear Yield Type Energy Dissipation Steel Plate;198
11.3.3;7.3.3 Main Performance Parameters of Buckling Prevention Shear Energy Dissipation Plate;203
11.3.4;7.3.4 Research and Development of New Shear Metal Damper;213
11.4;7.4 Bending Metal Damper;218
11.4.1;7.4.1 Research and Development of Drum-Shaped Open Hole Soft Steel Damper;218
11.4.2;7.4.2 Research and Development of Curved Steel Plate Damper;223
11.5;References;228
12;8 Tuned Damping Device;229
12.1;8.1 FM Mass Damper;229
12.1.1;8.1.1 Rubber Supported TMD;230
12.1.2;8.1.2 Suspended TMD;232
12.1.3;8.1.3 Integrated Ring Tuned Mass Damper;238
12.1.4;8.1.4 Adjustable Stiffness Vertical TMD;246
12.1.5;8.1.5 Calculation Model of TMD;246
12.2;8.2 FM Liquid Damper;251
12.2.1;8.2.1 Rectangular FM Liquid Damper;251
12.2.2;8.2.2 Circular FM Liquid Damper;253
12.2.3;8.2.3 Ring FM Liquid Damper;257
12.3;References;265
13;9 Isolation Bearing of Building Structure;266
13.1;9.1 High Performance Rubber Isolation Bearing;266
13.1.1;9.1.1 Damping Mechanism and Characteristics of Rubber Bearing;266
13.1.2;9.1.2 Improved Rubber Isolation Bearing with Low Shear Modulus;274
13.1.3;9.1.3 Honeycomb Sandwich Rubber Isolation Bearing;286
13.2;9.2 Composite Isolation Bearing;293
13.2.1;9.2.1 Dish Spring Composite Multi-dimensional Isolation Bearing;293
13.2.2;9.2.2 Rubber Composite Sliding Isolation Bearing;304
13.3;References;319
14;10 Other Damping Devices;320
14.1;10.1 Shape Memory Alloy Damper;320
14.1.1;10.1.1 Damping Mechanism and Characteristics of Shape Memory Alloy;320
14.1.2;10.1.2 Tension-Compression SMA Damper;343
14.1.3;10.1.3 Composite Friction SMA Damper;348
14.2;10.2 Foam Aluminum Composite Damper;357
14.2.1;10.2.1 Preparation of Foam Aluminum Composite Damping Material;358
14.2.2;10.2.2 Damping Mechanism and Characteristics of AF/PU Composite Material;363
14.2.3;10.2.3 AF/PU Composite Damper;381
14.3;References;393
15;Part III Design Method of Structural Vibration Control;394
16;11 Vibration Control Analysis Theory of Building Structure;395
16.1;11.1 Dynamic Model of Building Structure Damping System;395
16.1.1;11.1.1 Dynamic Model of Energy Dissipation Structure System;395
16.1.2;11.1.2 Dynamic Model of Frequency Modulation Damping Structure System;398
16.1.3;11.1.3 Dynamic Model of Isolated Structure System;399
16.2;11.2 Analysis Method of Building Structure Vibration Control;400
16.2.1;11.2.1 Numerical Analysis Method;400
16.2.2;11.2.2 Finite Element Software and Secondary Development;404
16.3;11.3 Vibration Control Dynamic Test of Building Structure;423
16.3.1;11.3.1 Dynamic Test of Energy Dissipation and Damping Structure System;424
16.3.2;11.3.2 Dynamic Test of Frequency Modulation Damping Structure System;451
16.3.3;11.3.3 Dynamic Test of Isolated Structure System;476
16.4;References;486
17;12 Vibration Control Design Method of Building Structure;488
17.1;12.1 Performance Level of Building Structure and Quantification;488
17.2;12.2 Design Method for Energy Dissipation and Vibration Control of Buildings;491
17.2.1;12.2.1 General Frame for Energy Dissipation and Vibration Control Design of Buildings;491
17.2.2;12.2.2 Viscous Fluid Damping Design of Building Structure;494
17.2.3;12.2.3 Metal Damping Design of Building Structure;497
17.2.4;12.2.4 Example of Energy Dissipation and Vibration Control Design of Buildings;498
17.3;12.3 Design Method of Building Frequency Modulation and Vibration Control;502
17.3.1;12.3.1 General Frame for Frequency Modulation and Vibration Control Design of Buildings;502
17.3.2;12.3.2 Example of Structure Frequency Modulation and Vibration Control Design;509
17.4;12.4 Design Method of Building Isolation;513
17.4.1;12.4.1 Conceptual Design of Building Isolation;513
17.4.2;12.4.2 Requirements and Methods of Building Isolation Structure Design;516
17.4.3;12.4.3 Design of Isolation Layer;519
17.4.4;12.4.4 Example of Building Structure Isolation Design;523
17.5;References;528
18;13 Intelligent Optimization Method of Building Structure Vibration Control;529
18.1;13.1 General Framework for Intelligent Optimization Design of Building Structure;529
18.2;13.2 Intelligent Optimization Design of Building Structure Based on Comprehensive Objective Method;532
18.2.1;13.2.1 Intelligent Optimization Design of Building Structure Based on Genetic Algorithm;532
18.2.2;13.2.2 Intelligent Optimization Design of Building Structure Based on Pattern Search;539
18.2.3;13.2.3 Intelligent Optimization Design of Building Structure Based on Hybrid Algorithm;543
18.3;13.3 Intelligent Optimization Design of Building Structure Based on Pareto Optimization;551
18.3.1;13.3.1 NSGA-II Basic Principles;551
18.3.2;13.3.2 Intelligent Optimization Design;554
18.4;References;560
19;Part IV Engineering Practice of Vibration Control for Building Structures;561
20;14 Vibration Control Engineering Practice for the Multistory and Tall Building Structure;562
20.1;14.1 High-Rise Office Building 1 in High Intensity Zone (Viscous Fluid Damper, Earthquake);562
20.1.1;14.1.1 Project Overview;562
20.1.2;14.1.2 Structural Energy Dissipation Design;563
20.1.3;14.1.3 Structural Analysis Model;563
20.1.4;14.1.4 Analysis of Structural Shock Absorption Performance;567
20.2;14.2 Office Building 2 in High Intensity Zone (Viscoelastic Damper, Earthquake);575
20.2.1;14.2.1 Project Overview;575
20.2.2;14.2.2 Structural Energy Dissipation Design;575
20.2.3;14.2.3 Structural Analysis Model;577
20.2.4;14.2.4 Analysis of Structural Seismic Absorption Performance;578
20.3;14.3 A Middle School Library (Metal Damper, Earthquake);581
20.3.1;14.3.1 Project Overview;581
20.3.2;14.3.2 Structural Energy Dissipation Design;582
20.3.3;14.3.3 Structural Analysis Model;583
20.3.4;14.3.4 Analysis of Structural Shock Absorption Performance;585
20.4;14.4 Tall Residential Building (Rubber Isolator, Earthquake);588
20.4.1;14.4.1 Project Overview;588
20.4.2;14.4.2 Structural Isolation Design;592
20.4.3;14.4.3 Analysis of the Isolation Structure;593
20.5;References;594
21;15 Engineering Practice of Vibration Control for Tall Structures;595
21.1;15.1 Beijing Olympic Tower (Wind Vibration, TMD);595
21.1.1;15.1.1 Project Overview;595
21.1.2;15.1.2 Structural Vibration Reduction Design Using TMD;596
21.1.3;15.1.3 Structural Analysis Model;598
21.1.4;15.1.4 Analysis of Vibration Absorption Performance of the Structure;600
21.1.5;15.1.5 Field Test and Analysis;606
21.2;15.2 Nanjing TV Tower (Wind Vibration, AMD);616
21.2.1;15.2.1 Project Overview;616
21.2.2;15.2.2 Structural Vibration Reduction Design Using AMD;617
21.2.3;15.2.3 Structural Vibration Reduction Analysis;624
21.3;15.3 Beijing Olympic Multi-functional Broadcasting Tower (Wind Vibration, TMD+Variable Damping Viscous Damper);626
21.3.1;15.3.1 Project Overview;626
21.3.2;15.3.2 Structural Vibration Reduction Design;627
21.3.3;15.3.3 Structural Analysis Model;627
21.3.4;15.3.4 Analysis of Vibration Absorption Performance of the Structure;627
21.3.5;15.3.5 Field Test and Analysis;630
21.4;15.4 Proposed Hefei TV Tower (Earthquake, Wind Vibration, TMD);633
21.4.1;15.4.1 Project Overview and Analysis Model;633
21.4.2;15.4.2 Analysis of Wind-Induced Vibration Response Control;638
21.4.3;15.4.3 Analysis of Seismic Response Control;642
21.5;References;646
22;16 Engineering Practice of Vibration Control for Long-Span Structures;648
22.1;16.1 Beijing Olympic National Conference Center (Pedestrian Load, TMD);648
22.1.1;16.1.1 Project Overview;648
22.1.2;16.1.2 Structural Vibration Reduction Design;649
22.1.3;16.1.3 Structural Analysis Model;649
22.1.4;16.1.4 Analysis of Structural Comfort Control;653
22.1.5;16.1.5 On-Site Dynamic Test;654
22.2;16.2 High-Speed Railway Hub Station (Pedestrian Load, TMD);657
22.2.1;16.2.1 Changsha New Railway Station;657
22.2.2;16.2.2 Xi’an North Railway Station;659
22.2.3;16.2.3 Shenyang Railway Station;665
22.3;16.3 Fuzhou Strait International Conference and Exhibition Center (Wind Vibration, TMD);670
22.3.1;16.3.1 Project Overview;671
22.3.2;16.3.2 Structural Vibration Reduction Design;671
22.3.3;16.3.3 Structural Analysis Model;672
22.3.4;16.3.4 Comparative Analysis of Wind-Induced Vibration of the Structure;672
22.4;References;677



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.