E-Book, Englisch, 677 Seiten
Li Vibration Control for Building Structures
1. Auflage 2020
ISBN: 978-3-030-40790-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Theory and Applications
E-Book, Englisch, 677 Seiten
Reihe: Springer Tracts in Civil Engineering
ISBN: 978-3-030-40790-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents a comprehensive introduction to the field of structural vibration reduction control, but may also be used as a reference source for more advanced topics. The content is divided into four main parts: the basic principles of structural vibration reduction control, structural vibration reduction devices, structural vibration reduction design methods, and structural vibration reduction engineering practices. As the book strikes a balance between theoretical and practical aspects, it will appeal to researchers and practicing engineers alike, as well as graduate students.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;1 Summary;16
3.1;1.1 Concept and Principle of Structural Vibration Control;17
3.1.1;1.1.1 Structure Damping Principle;18
3.1.2;1.1.2 Structure Isolation Principle;19
3.2;1.2 Classification and Basic Performance of Structural Vibration Control Technology;20
3.3;1.3 Development and Current Situation of Structural Vibration Control;21
3.4;References;24
4;Part I Basic Principle of Structural Vibration Control;26
5;2 Basic Principles of Energy Dissipation and Vibration Control;27
5.1;2.1 Passive Control;27
5.1.1;2.1.1 Motion Equation of SDOF System;27
5.1.2;2.1.2 Commonly Used Passive Energy Dissipation Dampers;31
5.1.3;2.1.3 Motion Equation of Passive Vibration Absorbing Structural System;31
5.2;2.2 Active and Semi-active Control;35
5.2.1;2.2.1 Commonly Used Active and Semi-active Control Strategies;35
5.2.2;2.2.2 Motion Equations of Active and Semi-active Vibration Absorbing Systems;37
5.2.3;2.2.3 Structural State Equation;38
5.2.4;2.2.4 Structural Active Control Algorithm;44
5.2.5;2.2.5 Structural Semi-active Control Algorithm;52
5.3;2.3 Intelligent Control;58
5.4;2.4 Hybrid Control;58
5.5;References;58
6;3 Basic Principle of Frequency Modulation Vibration Control;60
6.1;3.1 FM Mass Vibration Control;60
6.1.1;3.1.1 Motion Equation of FM Mass Vibration Control System;60
6.1.2;3.1.2 Basic Characteristics of FM Mass Vibration Control;62
6.1.3;3.1.3 Construction of FM Mass Vibration Control;68
6.2;3.2 FM Liquid Vibration Control;69
6.2.1;3.2.1 Motion Equation of FM Liquid Vibration Control System;69
6.2.2;3.2.2 Basic Characteristics of FM Liquid Vibration Control;74
6.3;References;74
7;4 Basic Principle of Structural Isolation;75
7.1;4.1 Motion Equation of Isolated Structural System;75
7.2;4.2 Basic Characteristics of Isolated Structural System;77
7.2.1;4.2.1 Response Analysis of Isolated Structural System;77
7.2.2;4.2.2 Response Characteristics of Isolated Structural System;79
7.3;4.3 Commonly Used Isolation Devices for Building Structures;81
7.3.1;4.3.1 Rubber Isolation System;82
7.3.2;4.3.2 Sliding Isolation System;84
7.3.3;4.3.3 Hybrid Isolation System;85
7.4;References;87
8;Part II Damping Devices of Building Structures;88
9;5 Viscous Fluid Damper;89
9.1;5.1 Mechanism and Characteristics of Viscous Fluid Damper;89
9.1.1;5.1.1 Types and Characteristics of Damping Medium;89
9.1.2;5.1.2 Energy Dissipation Mechanism of Viscous Fluid Damper;95
9.1.3;5.1.3 Calculation Model of Viscous Fluid Damper;109
9.2;5.2 Properties and Improvement of Viscous Fluid Materials;110
9.2.1;5.2.1 Modification of Viscous Fluid Damping Materials;110
9.2.2;5.2.2 Material Property Test of Viscous Fluid;112
9.2.3;5.2.3 Test Results and Analysis;112
9.3;5.3 Research and Development of New Viscous Fluid Damper;118
9.3.1;5.3.1 Linear Viscous Fluid Damper;118
9.3.2;5.3.2 Nonlinear Viscous Fluid Damper;123
9.3.3;5.3.3 Other Viscous Fluid Damping Devices;127
9.4;5.4 Performance Test of Viscous Fluid Damper;132
9.4.1;5.4.1 Maximum Damping Force Test;132
9.4.2;5.4.2 Regularity Test of Damping Force;133
9.4.3;5.4.3 Test of Loading Frequency Related Performance of Maximum Damping Force;133
9.4.4;5.4.4 Test of Temperature Related Performance of Maximum Damping Force;134
9.4.5;5.4.5 Pressure Maintaining Inspection;135
9.4.6;5.4.6 Fatigue Performance Test;135
9.5;References;137
10;6 Viscoelastic Damper;138
10.1;6.1 Viscoelastic Damping Mechanism and Characteristics;138
10.1.1;6.1.1 Types and Characteristics of Viscoelastic Materials;138
10.1.2;6.1.2 Calculation Model of Viscoelastic Damper;140
10.2;6.2 Properties and Improvement of Viscoelastic Materials;147
10.2.1;6.2.1 Inorganic Small Molecule Hybrid, Blending of Rubber and Plastic;147
10.2.2;6.2.2 Long Chain Polymer Blending Method;155
10.3;6.3 Research and Development of New Viscoelastic Damper;158
10.3.1;6.3.1 Laminated Viscoelastic Damper;158
10.3.2;6.3.2 Cylindrical Viscoelastic Damper;163
10.3.3;6.3.3 “5 + 4” Viscoelastic Damping Wall;167
10.4;References;169
11;7 Metal Damper;170
11.1;7.1 Mechanism and Characteristics of Metal Damping;170
11.1.1;7.1.1 Basic Principle of Metal Damper;170
11.1.2;7.1.2 Properties of Steel with Low Yield Point;172
11.1.3;7.1.3 Type and Calculation Performance of Metal Damper;176
11.2;7.2 Tension-Compression Type Metal Damper;182
11.2.1;7.2.1 Working Mechanism of Buckling Proof Brace;183
11.2.2;7.2.2 Research and Development of New Buckling Proof Support;186
11.3;7.3 Shear Type Metal Damper;193
11.3.1;7.3.1 Stress Mechanism of Unconstrained Shear Steel Plate;193
11.3.2;7.3.2 Buckling Proof Design of in-Plane Shear Yield Type Energy Dissipation Steel Plate;198
11.3.3;7.3.3 Main Performance Parameters of Buckling Prevention Shear Energy Dissipation Plate;203
11.3.4;7.3.4 Research and Development of New Shear Metal Damper;213
11.4;7.4 Bending Metal Damper;218
11.4.1;7.4.1 Research and Development of Drum-Shaped Open Hole Soft Steel Damper;218
11.4.2;7.4.2 Research and Development of Curved Steel Plate Damper;223
11.5;References;228
12;8 Tuned Damping Device;229
12.1;8.1 FM Mass Damper;229
12.1.1;8.1.1 Rubber Supported TMD;230
12.1.2;8.1.2 Suspended TMD;232
12.1.3;8.1.3 Integrated Ring Tuned Mass Damper;238
12.1.4;8.1.4 Adjustable Stiffness Vertical TMD;246
12.1.5;8.1.5 Calculation Model of TMD;246
12.2;8.2 FM Liquid Damper;251
12.2.1;8.2.1 Rectangular FM Liquid Damper;251
12.2.2;8.2.2 Circular FM Liquid Damper;253
12.2.3;8.2.3 Ring FM Liquid Damper;257
12.3;References;265
13;9 Isolation Bearing of Building Structure;266
13.1;9.1 High Performance Rubber Isolation Bearing;266
13.1.1;9.1.1 Damping Mechanism and Characteristics of Rubber Bearing;266
13.1.2;9.1.2 Improved Rubber Isolation Bearing with Low Shear Modulus;274
13.1.3;9.1.3 Honeycomb Sandwich Rubber Isolation Bearing;286
13.2;9.2 Composite Isolation Bearing;293
13.2.1;9.2.1 Dish Spring Composite Multi-dimensional Isolation Bearing;293
13.2.2;9.2.2 Rubber Composite Sliding Isolation Bearing;304
13.3;References;319
14;10 Other Damping Devices;320
14.1;10.1 Shape Memory Alloy Damper;320
14.1.1;10.1.1 Damping Mechanism and Characteristics of Shape Memory Alloy;320
14.1.2;10.1.2 Tension-Compression SMA Damper;343
14.1.3;10.1.3 Composite Friction SMA Damper;348
14.2;10.2 Foam Aluminum Composite Damper;357
14.2.1;10.2.1 Preparation of Foam Aluminum Composite Damping Material;358
14.2.2;10.2.2 Damping Mechanism and Characteristics of AF/PU Composite Material;363
14.2.3;10.2.3 AF/PU Composite Damper;381
14.3;References;393
15;Part III Design Method of Structural Vibration Control;394
16;11 Vibration Control Analysis Theory of Building Structure;395
16.1;11.1 Dynamic Model of Building Structure Damping System;395
16.1.1;11.1.1 Dynamic Model of Energy Dissipation Structure System;395
16.1.2;11.1.2 Dynamic Model of Frequency Modulation Damping Structure System;398
16.1.3;11.1.3 Dynamic Model of Isolated Structure System;399
16.2;11.2 Analysis Method of Building Structure Vibration Control;400
16.2.1;11.2.1 Numerical Analysis Method;400
16.2.2;11.2.2 Finite Element Software and Secondary Development;404
16.3;11.3 Vibration Control Dynamic Test of Building Structure;423
16.3.1;11.3.1 Dynamic Test of Energy Dissipation and Damping Structure System;424
16.3.2;11.3.2 Dynamic Test of Frequency Modulation Damping Structure System;451
16.3.3;11.3.3 Dynamic Test of Isolated Structure System;476
16.4;References;486
17;12 Vibration Control Design Method of Building Structure;488
17.1;12.1 Performance Level of Building Structure and Quantification;488
17.2;12.2 Design Method for Energy Dissipation and Vibration Control of Buildings;491
17.2.1;12.2.1 General Frame for Energy Dissipation and Vibration Control Design of Buildings;491
17.2.2;12.2.2 Viscous Fluid Damping Design of Building Structure;494
17.2.3;12.2.3 Metal Damping Design of Building Structure;497
17.2.4;12.2.4 Example of Energy Dissipation and Vibration Control Design of Buildings;498
17.3;12.3 Design Method of Building Frequency Modulation and Vibration Control;502
17.3.1;12.3.1 General Frame for Frequency Modulation and Vibration Control Design of Buildings;502
17.3.2;12.3.2 Example of Structure Frequency Modulation and Vibration Control Design;509
17.4;12.4 Design Method of Building Isolation;513
17.4.1;12.4.1 Conceptual Design of Building Isolation;513
17.4.2;12.4.2 Requirements and Methods of Building Isolation Structure Design;516
17.4.3;12.4.3 Design of Isolation Layer;519
17.4.4;12.4.4 Example of Building Structure Isolation Design;523
17.5;References;528
18;13 Intelligent Optimization Method of Building Structure Vibration Control;529
18.1;13.1 General Framework for Intelligent Optimization Design of Building Structure;529
18.2;13.2 Intelligent Optimization Design of Building Structure Based on Comprehensive Objective Method;532
18.2.1;13.2.1 Intelligent Optimization Design of Building Structure Based on Genetic Algorithm;532
18.2.2;13.2.2 Intelligent Optimization Design of Building Structure Based on Pattern Search;539
18.2.3;13.2.3 Intelligent Optimization Design of Building Structure Based on Hybrid Algorithm;543
18.3;13.3 Intelligent Optimization Design of Building Structure Based on Pareto Optimization;551
18.3.1;13.3.1 NSGA-II Basic Principles;551
18.3.2;13.3.2 Intelligent Optimization Design;554
18.4;References;560
19;Part IV Engineering Practice of Vibration Control for Building Structures;561
20;14 Vibration Control Engineering Practice for the Multistory and Tall Building Structure;562
20.1;14.1 High-Rise Office Building 1 in High Intensity Zone (Viscous Fluid Damper, Earthquake);562
20.1.1;14.1.1 Project Overview;562
20.1.2;14.1.2 Structural Energy Dissipation Design;563
20.1.3;14.1.3 Structural Analysis Model;563
20.1.4;14.1.4 Analysis of Structural Shock Absorption Performance;567
20.2;14.2 Office Building 2 in High Intensity Zone (Viscoelastic Damper, Earthquake);575
20.2.1;14.2.1 Project Overview;575
20.2.2;14.2.2 Structural Energy Dissipation Design;575
20.2.3;14.2.3 Structural Analysis Model;577
20.2.4;14.2.4 Analysis of Structural Seismic Absorption Performance;578
20.3;14.3 A Middle School Library (Metal Damper, Earthquake);581
20.3.1;14.3.1 Project Overview;581
20.3.2;14.3.2 Structural Energy Dissipation Design;582
20.3.3;14.3.3 Structural Analysis Model;583
20.3.4;14.3.4 Analysis of Structural Shock Absorption Performance;585
20.4;14.4 Tall Residential Building (Rubber Isolator, Earthquake);588
20.4.1;14.4.1 Project Overview;588
20.4.2;14.4.2 Structural Isolation Design;592
20.4.3;14.4.3 Analysis of the Isolation Structure;593
20.5;References;594
21;15 Engineering Practice of Vibration Control for Tall Structures;595
21.1;15.1 Beijing Olympic Tower (Wind Vibration, TMD);595
21.1.1;15.1.1 Project Overview;595
21.1.2;15.1.2 Structural Vibration Reduction Design Using TMD;596
21.1.3;15.1.3 Structural Analysis Model;598
21.1.4;15.1.4 Analysis of Vibration Absorption Performance of the Structure;600
21.1.5;15.1.5 Field Test and Analysis;606
21.2;15.2 Nanjing TV Tower (Wind Vibration, AMD);616
21.2.1;15.2.1 Project Overview;616
21.2.2;15.2.2 Structural Vibration Reduction Design Using AMD;617
21.2.3;15.2.3 Structural Vibration Reduction Analysis;624
21.3;15.3 Beijing Olympic Multi-functional Broadcasting Tower (Wind Vibration, TMD+Variable Damping Viscous Damper);626
21.3.1;15.3.1 Project Overview;626
21.3.2;15.3.2 Structural Vibration Reduction Design;627
21.3.3;15.3.3 Structural Analysis Model;627
21.3.4;15.3.4 Analysis of Vibration Absorption Performance of the Structure;627
21.3.5;15.3.5 Field Test and Analysis;630
21.4;15.4 Proposed Hefei TV Tower (Earthquake, Wind Vibration, TMD);633
21.4.1;15.4.1 Project Overview and Analysis Model;633
21.4.2;15.4.2 Analysis of Wind-Induced Vibration Response Control;638
21.4.3;15.4.3 Analysis of Seismic Response Control;642
21.5;References;646
22;16 Engineering Practice of Vibration Control for Long-Span Structures;648
22.1;16.1 Beijing Olympic National Conference Center (Pedestrian Load, TMD);648
22.1.1;16.1.1 Project Overview;648
22.1.2;16.1.2 Structural Vibration Reduction Design;649
22.1.3;16.1.3 Structural Analysis Model;649
22.1.4;16.1.4 Analysis of Structural Comfort Control;653
22.1.5;16.1.5 On-Site Dynamic Test;654
22.2;16.2 High-Speed Railway Hub Station (Pedestrian Load, TMD);657
22.2.1;16.2.1 Changsha New Railway Station;657
22.2.2;16.2.2 Xi’an North Railway Station;659
22.2.3;16.2.3 Shenyang Railway Station;665
22.3;16.3 Fuzhou Strait International Conference and Exhibition Center (Wind Vibration, TMD);670
22.3.1;16.3.1 Project Overview;671
22.3.2;16.3.2 Structural Vibration Reduction Design;671
22.3.3;16.3.3 Structural Analysis Model;672
22.3.4;16.3.4 Comparative Analysis of Wind-Induced Vibration of the Structure;672
22.4;References;677




