Li / Zhang / Wu | Deep Learning for Human Activity Recognition | Buch | 978-981-16-0574-1 | sack.de

Buch, Englisch, Band 1370, 139 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 242 g

Reihe: Communications in Computer and Information Science

Li / Zhang / Wu

Deep Learning for Human Activity Recognition

Second International Workshop, DL-HAR 2020, Held in Conjunction with IJCAI-PRICAI 2020, Kyoto, Japan, January 8, 2021, Proceedings
1. Auflage 2021
ISBN: 978-981-16-0574-1
Verlag: Springer Nature Singapore

Second International Workshop, DL-HAR 2020, Held in Conjunction with IJCAI-PRICAI 2020, Kyoto, Japan, January 8, 2021, Proceedings

Buch, Englisch, Band 1370, 139 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 242 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-16-0574-1
Verlag: Springer Nature Singapore


This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. 
The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.
Li / Zhang / Wu Deep Learning for Human Activity Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Human Activity Recognition using Wearable Sensors: Review, Challenges, Evaluation Benchmark.- Wheelchair Behavior Recognition for Visualizing Sidewalk Accessibility by Deep Neural Networks.- Toward Data Augmentation and Interpretation in Sensor-Based Fine-Grained Hand Activity Recognition.- Personalization Models for Human Activity Recognition With Distribution Matching-Based Metrics.- Resource-Constrained Federated Learning with Heterogeneous Labels and Models for Human Activity Recognition.- ARID: A New Dataset for Recognizing Action in the Dark.- Single Run Action Detector over Video Stream - A Privacy Preserving Approach.- Ef?cacy of Model Fine-Tuning for Personalized Dynamic Gesture Recognition.- Fully Convolutional Network Bootstrapped by Word Encoding and Embedding for Activity Recognition in Smart Homes.- Towards User Friendly Medication Mapping Using Entity-Boosted Two-Tower Neural Network.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.