Buch, Englisch, 458 Seiten, Paperback, Format (B × H): 140 mm x 216 mm, Gewicht: 608 g
Buch, Englisch, 458 Seiten, Paperback, Format (B × H): 140 mm x 216 mm, Gewicht: 608 g
Reihe: History of Analytic Philosophy
ISBN: 978-1-349-46611-5
Verlag: Palgrave Macmillan UK
To mark the centenary of the 1910 to 1913 publication of the monumental Principia Mathematica by Alfred N. Whitehead and Bertrand Russell, this collection of fifteen new essays by distinguished scholars considers the influence and history of PM over the last hundred years.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Geisteswissenschaften Philosophie Geschichte der Westlichen Philosophie
- Geisteswissenschaften Philosophie Moderne Philosophische Disziplinen Philosophie des Geistes, Neurophilosophie
- Geisteswissenschaften Philosophie Wissenschaftstheorie, Wissenschaftsphilosophie
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
Weitere Infos & Material
Note on Citations Introduction: Nicholas Griffin and Bernard Linsky PART I: THE INFLUENCE OF PM 1. Principia Mathematica: The First Hundred Years; Alasdair Urquhart 2. David Hilbert and Principia Mathematica; Reinhard Kahle: 3. Principia Mathematica in Poland; Jan Wolenski PART II: RUSSELL'S PHILOSOPHY OF LOGIC AND LOGICISM 4. From Logicism to Metatheory; Patricia Blanchette 5. Russell on Real Variables and Vague Denotation; Edwin Mares 6. The Logic of Classes and the No-Class Theory; Byeong-uk Yi 7. Why There Is No Frege–Russell Definition of Number; Jolen Galaugher PART III: TYPE THEORY AND ONTOLOGY 8. Principia Mathematica: ?! versus ?;Gregory Landini 9. PM's Circumflex, Syntax and Philosophy of Types; Kevin Klement 10. Principia Mathematica, the Multiple-Relation Theory of Judgment and Molecular Facts; James Levine 11. Report on Some Ramified-Type Assignment Systems and Their Model-Theoretic Semantics; Harold Hodes 12. Outline of a Theory of Quantification; Dustin Tucker PART IV: MATHEMATICS IN PM 13. Whatever Happened to Group Theory?; Nicholas Griffin 14. Proofs of the Cantor–Bernstein Theorem in Principia Mathematica; Arie Hinkis 15. Quantity and Number in Principia Mathematica: A Plea for an Ontological Interpretation of the Application Constraint; Sébastien Gandon