Liu / Fullerton / Gutfleisch | Nanoscale Magnetic Materials and Applications | E-Book | www.sack.de
E-Book

E-Book, Englisch, 719 Seiten

Liu / Fullerton / Gutfleisch Nanoscale Magnetic Materials and Applications


1. Auflage 2010
ISBN: 978-0-387-85600-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 719 Seiten

ISBN: 978-0-387-85600-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.      

Liu / Fullerton / Gutfleisch Nanoscale Magnetic Materials and Applications jetzt bestellen!

Weitere Infos & Material


1;Foreword;5
2;Preface;7
3;Contents;9
4;Contributors;21
5;1 Spin Dynamics: Fast Switching of Macro-spins;25
5.1;1.1 Introduction;25
5.2;1.2 Spin and Its Kinetics and Dynamics;27
5.2.1;1.2.1 Basic Concepts of Spin;27
5.2.2;1.2.2 Kinetics of Spin: Spin Current;28
5.2.3;1.2.3 Dynamics of Spin: Bloch Equation, Landau--Lifshitz Equation, and Landau--Lifshitz--Gilbert Equation;29
5.2.3.1;1.2.3.1 Bloch Equation;30
5.2.3.2;1.2.3.2 Landau--Lifshitz Equation and Landau--Lifshitz--Gilbert Equation;30
5.3;1.3 Macro-spin Reversal with a Static Magnetic Field;33
5.3.1;1.3.1 A Nonlinear Dynamics Picture of Magnetization Reversal;33
5.3.2;1.3.2 The Exactness of SW-Limit at Infinitely Large Dissipation;35
5.3.3;1.3.3 Critical Value of Damping Constant;37
5.3.4;1.3.4 Ballistic Reversal;39
5.4;1.4 Macro-spin Reversal with a Time-Dependent Magnetic Field;41
5.4.1;1.4.1 Strategy I: Field Following the Magnetization Motion;42
5.4.2;1.4.2 Strategy II: Synchronizing the Magnetization Motion with a Circularly Polarized Microwave;45
5.4.3;1.4.3 Theoretical Limits of Switching Field/Current and Optimal Reversal Pulses;49
5.5;1.5 Summary;56
6;2 CoreShell Magnetic Nanoclusters;59
6.1;2.1 Introduction;59
6.2;2.2 Experimental Studies of CoreShell Magnetic Clusters;61
6.2.1;2.2.1 Iron-Based (Fe--Au) Core--Shell Nanoclusters;62
6.2.2;2.2.2 Cobalt-Based Core--Shell Nanoclusters;68
6.2.2.1;2.2.2.1 Co--Pt Core--Shell Nanoalloys;68
6.2.2.2;2.2.2.2 Co@Au, Co@Pd, Co@Pt, and Co@Cu Nanoparticles;70
6.2.2.3;2.2.2.3 Pt--Co Core--Shell Nanoclusters;71
6.2.2.4;2.2.2.4 Co--Cu Core--Shell Nanoclusters;71
6.2.2.5;2.2.2.5 Co@Ag Core/Shell Nanoclusters;73
6.2.2.6;2.2.2.6 Co--Au Core--Shell Nanoclusters;73
6.2.3;2.2.3 Ni-Based Core--Shell Nanoclusters;74
6.2.3.1;2.2.3.1 Ni--Pd Core--Shell Nanoclusters;74
6.2.3.2;2.2.3.2 Ni--Ag Core--Shell Nanoclusters;74
6.2.3.3;2.2.3.3 Ni--Au Core--Shell Nanoclusters;75
6.3;2.3 Theoretical Studies of Bimetallic Magnetic CoreShell Nanoclusters;75
6.3.1;2.3.1 Iron-Based (Fe--Au) Core--Shell Nanoclusters;75
6.3.2;2.3.2 Cobalt-Based Core--Shell Nanoclusters;77
6.3.2.1;2.3.2.1 Co--Cu, Co--Ag Core--Shell Nanoclusters;77
6.3.2.2;2.3.2.2 Pd--Ag, Ni--Ag, Ni--Au, Co--Au Core--Shell Nanoclusters;78
6.3.3;2.3.3 Mn-Based CoreShell Nanoclusters: [Mn 13 @Au 20 ] -- ;83
6.4;2.4 Summary;84
7;3 Designed Magnetic Nanostructures;90
7.1;3.1 Introduction;90
7.2;3.2 Structure, Chemistry, and Geometry;93
7.2.1;3.2.1 Synthesis of Supported Nanostructures;94
7.2.2;3.2.2 Case Study: Fe Clusters on Pt Surfaces;96
7.2.3;3.2.3 Structure of Embedded Clusters;98
7.2.4;3.2.4 Case Study: FePt Clusters in a Carbon Matrix;101
7.3;3.3 Anisotropy and Hysteresis;102
7.3.1;3.3.1 Surface and Interface Anisotropies;103
7.3.2;3.3.2 Hysteresis of Fe Clusters on Pt;104
7.3.3;3.3.3 Role of Heavy Transition Metals;106
7.3.4;3.3.4 Proteresis;108
7.4;3.4 Quantum-Mechanical Effects;108
7.4.1;3.4.1 Embedding from a Quantum-Mechanical Point of View;109
7.4.2;3.4.2 Exchange Interactions;110
7.4.3;3.4.3 Preasymptotic Coupling;113
7.4.4;3.4.4 Kondo Effect;115
7.4.5;3.4.5 Entanglement;116
7.5;3.5 Concluding Remarks;117
8;4 Superconductivity and Magnetism in Silicon and Germanium Clathrates;127
8.1;4.1 Introduction;127
8.2;4.2 Superconductivity in Si 46 Clathrates;130
8.3;4.3 Rattler Atoms and Narrow Bands;130
8.4;4.4 Superconducting Mechanism;133
8.5;4.5 Zintl Concept and Vacancies;137
8.6;4.6 Superconductivity in Other Clathrates;138
8.7;4.7 Magnetism;139
8.8;4.8 Conclusions;140
9;5 Neutron Scattering of Magnetic Materials;145
9.1;5.1 Introduction;145
9.2;5.2 Interaction of Neutrons and Materials: A Brief Presentation;146
9.3;5.3 Crystal Structure Investigation;148
9.3.1;5.3.1 Powder Diffraction;148
9.3.2;5.3.2 Single Crystal Diffraction;148
9.4;5.4 In Situ Neutron Diffraction;149
9.4.1;5.4.1 Thermodiffractometry: Crystallization of Amorphous Materials;150
9.4.2;5.4.2 In Situ Investigation of the Synthesis and Ordering of nanocrystalline FePt Alloys;151
9.4.3;5.4.3 Time-Resolved Neutron Diffraction Studies;152
9.4.3.1;5.4.3.1 Decomposition of Nd 2 Fe 14 B Under Hydrogen Atmosphere;153
9.4.3.2;5.4.3.2 Kinetics of Photoinduced Transformation;154
9.5;5.5 Magnetic Structure Determination;155
9.6;5.6 Magnetic Phase Transition;157
9.6.1;5.6.1 Magnetic Phase Transitions Studied by Powder Diffraction;157
9.6.2;5.6.2 Magnetic Phase Transitions Studied by Single Crystal Diffraction;159
9.7;5.7 Polarized Neutron Techniques;160
9.7.1;5.7.1 Uniaxial Polarization Analysis;160
9.7.2;5.7.2 Spherical Neutron Polarimetry;163
9.8;5.8 Small-Angle Neutron Scattering;163
9.9;5.9 Neutron Scattering on Magnetic Surfaces;166
9.10;5.10 Magnetic Excitations;168
9.11;5.11 Neutron Scattering Under Extreme Conditions;170
9.12;5.12 Conclusions;172
10;6 Tunable Exchange Bias Effects;180
10.1;6.1 Introduction;180
10.2;6.2 Electrically Tuned Exchange Bias;185
10.2.1;6.2.1 Electrically Tuned Exchange Bias with Magnetoelectrics;186
10.2.2;6.2.2 Electrically Tuned Exchange Bias with Multiferroics;189
10.2.3;6.2.3 Piezomagnetically and Piezoelectrically Tuned Exchange Bias;190
10.3;6.3 Magnetic Field Control of Exchange Bias;191
10.4;6.4 Training Effect in Exchange-Coupled Bilayers;195
10.4.1;6.4.1 Physical Background of Training Effects in Various Systems;195
10.4.2;6.4.2 Tuning the Training Effect;199
10.5;6.5 Conclusion;199
11;7 Dynamics of Domain Wall Motion in Wires with Perpendicular Anisotropy;205
11.1;7.1 Introduction;205
11.2;7.2 Basics of Field-Induced DW Motion in Pt/Co/Pt Ultra-Thin Films;207
11.2.1;7.2.1 Mechanisms of Magnetization Reversal in Pt/Co/Pt Trilayers;208
11.2.2;7.2.2 Different Regimes of DW Motion: The Role of Defects;209
11.3;7.3 Control and Detection of Single DW Motion in Magnetic Wires;212
11.3.1;7.3.1 Wires Nanofabrication and Injection of a Single Domain Wall;213
11.3.2;7.3.2 Electrical Methods to Detect DW Motion Along Tracks;214
11.4;7.4 Field-Induced DW Motion Along Wires: Role of Structural Defects;216
11.4.1;7.4.1 The Role of Edge Roughness on the Creep Regime in Co/Pt Films;216
11.4.2;7.4.2 The Role of Intrinsic Defects in Co/Ni Films;221
11.5;7.5 Control of the Pinning Potential;223
11.5.1;7.5.1 Ion Irradiation of Co/Pt Films: A Way to Reduce Intrinsic Structural Defects;224
11.5.2;7.5.2 A DW Propagating in a Hall Cross: An Artificial Pinning Potential;227
11.6;7.6 Current Induced DW Depinning;228
11.7;7.7 Conclusion;233
12;8 Magnetic Nanowires for Domain Wall Logic and Ultrahigh Density Data Storage;238
12.1;8.1 Domain Wall Propagation and Nucleation;238
12.2;8.2 Domain Wall Conduits;239
12.3;8.3 The NOT Gate and Shift Register Element;242
12.4;8.4 Data InputOutput;244
12.5;8.5 Using the Chirality of the Transverse Domain Wall;247
12.6;8.6 Potential Applications of Domain Wall Logic;250
12.7;8.7 Conclusion;253
13;9 Bit-Patterned Magnetic Recording: Nanoscale Magnetic Islands for Data Storage;256
13.1;9.1 Introduction;256
13.2;9.2 Theoretical Perspective of Bit-Patterned Recording;258
13.2.1;9.2.1 Island Addressability in Bit-Patterned Recording;259
13.2.2;9.2.2 Fabrication Tolerances of BPM;261
13.2.3;9.2.3 Thermal Constraints;262
13.2.4;9.2.4 Magnetostatic Interaction Fields Between Islands;264
13.2.5;9.2.5 BPM Designs for Tb/in 2 Densities;265
13.3;9.3 Optimization of the Magnetic Materials;267
13.3.1;9.3.1 Magnetic Characterization;268
13.3.2;9.3.2 Magnetic Switching-Field Distribution;271
13.3.3;9.3.3 Laminated Magnetic Media;273
13.3.4;9.3.4 Magnetic Trench Noise Reduction;274
13.4;9.4 Fabrication of Bit-Patterned Media;275
13.5;9.5 Generation of Master Patterns Beyond 1Tbit/in 2 via Guided Self-Assembly of Block Copolymer Domain Arrays;278
13.5.1;9.5.1 Ordering, Size Distribution, and Scalability: Patterned Media Requirements vs. Block Copolymer Fundamental Limitations ;279
13.5.2;9.5.2 Approaches to Long-Range Orientational and Translational Order in Block Copolymer Templates;281
13.6;9.6 Write Synchronization;283
13.6.1;9.6.1 Requirements for Write Synchronization;284
13.6.2;9.6.2 Options to Achieve Write Synchronization;284
13.6.3;9.6.3 Timing Variations Observed in a Conventional Drive;285
13.6.4;9.6.4 Implementation of a Sector Synchronization System;287
13.7;9.7 Conclusion;289
14;10 The Magnetic Microstructure of Nanostructured Materials;294
14.1;10.1 Overview;294
14.2;10.2 Coarse-Grained Material and Amorphous Ribbons;296
14.3;10.3 Domains in Nanocrystalline Ribbons;300
14.3.1;10.3.1 Random Anisotropy Model;302
14.3.2;10.3.2 Interplay of Random and Uniaxial Anisotropies;306
14.3.3;10.3.3 Magnetization Process;311
14.4;10.4 Domains in Nanocrystalline Magnetic Films;315
14.5;10.5 Domains in Fine- and Nanostructured Permanent Magnets;319
14.6;10.6 Summary;323
15;11 Exchange-Coupled Nanocomposite Permanent Magnets;327
15.1;11.1 Introduction;327
15.2;11.2 Fundamental Aspects;328
15.2.1;11.2.1 The Early Models;329
15.2.2;11.2.2 The Soft Phase Effects;331
15.2.3;11.2.3 The Interface Effects;332
15.2.4;11.2.4 Coercivity Mechanisms;334
15.2.5;11.2.5 Characterization of Inter-phase Exchange Coupling;334
15.2.5.1;11.2.5.1 The ''Kink'' Method;335
15.2.5.2;11.2.5.2 Low-Temperature Measurements;335
15.2.5.3;11.2.5.3 Recoil Loop Measurements;336
15.2.5.4;11.2.5.4 0 M Method (Henkel Plot) ;337
15.2.5.5;11.2.5.5 Element-Specific Measurements (Synchrotron Measurements);338
15.3;11.3 Experimental Approaches;339
15.3.1;11.3.1 The Early Approaches;339
15.3.2;11.3.2 Nanoparticle Approaches;340
15.3.2.1;11.3.2.1 Chemical Synthesis of Nanoparticles;340
15.3.2.2;11.3.2.2 Salt-Matrix Annealing;342
15.3.2.3;11.3.2.3 Surfactant-Assisted Ball Milling;343
15.3.2.4;11.3.2.4 Gas-Phase Condensed Nanoparticles;343
15.3.2.5;11.3.2.5 Core/Shell Structured Nanoparticles;344
15.3.3;11.3.3 Fabrication of Nanocomposite Bulk Magnets;345
15.3.3.1;11.3.3.1 Warm Compaction;345
15.3.3.2;11.3.3.2 Spark Plasma Sintering Compaction;347
15.3.3.3;11.3.3.3 Dynamic Compaction;347
15.4;11.4 Work Toward Anisotropic Nanocomposite Magnets;349
16;12 High-Temperature Samarium Cobalt Permanent Magnets;354
16.1;12.1 Introduction;354
16.2;12.2 Physical Metallurgy and Crystal Structures;356
16.3;12.3 Coercivity Mechanism and the Development of High-Temperature 2:17-Type Magnets;360
16.3.1;12.3.1 The Sm(CoCu) 5 Cell Boundary Phase;360
16.3.2;12.3.2 Alloy Optimization;361
16.3.3;12.3.3 Stability at Operating Temperature;365
16.4;12.4 Microchemistry and Pinning Behavior in Sm 2 Co 17 -Type Magnets;366
16.4.1;12.4.1 Redistribution of Cu and Slow Cooling;366
16.4.2;12.4.2 Stability of Microchemistry;369
16.4.3;12.4.3 ''Anomalous'' Coercivity Behavior;372
16.5;12.5 Magnetic Domains and Coercivity;373
16.5.1;12.5.1 Analysis of Magnetic Microstructure;374
16.5.2;12.5.2 Domains and Processing Parameters;375
16.6;12.6 Non-equilibrium Processing Routes;379
16.6.1;12.6.1 Rapidly Quenched SmCo 5 /Sm 2 Co 17 Magnets;379
16.6.2;12.6.2 Mechanically Alloyed SmCo 5 /Sm 2 Co 17 Magnets;380
16.6.3;12.6.3 Hydrogen Disproportionated SmCo 5 and Sm 2 Co 17 Alloys;381
16.7;12.7 Acronyms;384
17;13 Nanostructured Soft Magnetic Materials;390
17.1;13.1 Introduction;390
17.2;13.2 Materials Development;393
17.2.1;13.2.1 Alloy Processing and Design;394
17.2.2;13.2.2 Phase Transformations;395
17.2.3;13.2.3 Annealing Techniques;398
17.3;13.3 Magnetic Performance;399
17.3.1;13.3.1 Exchange-Averaged Anisotropy;400
17.3.2;13.3.2 Intrinsic Magnetic Properties;401
17.3.3;13.3.3 Domain Structure;402
17.3.4;13.3.4 Hysteretic Losses;403
17.3.5;13.3.5 AC Properties;405
17.3.6;13.3.6 Thermomagnetics;406
17.4;13.4 Applications;406
17.4.1;13.4.1 Power Applications;408
17.4.2;13.4.2 Electromagnetic Interference Applications;409
17.4.3;13.4.3 Sensor Applications;410
17.5;13.5 Summary;410
18;14 Magnetic Shape Memory Phenomena;415
18.1;14.1 Introduction;415
18.2;14.2 Martensitic Transformation and Twinning;417
18.3;14.3 Modes of Magnetic Field-Induced Strain;418
18.3.1;14.3.1 Magnetostriction;419
18.3.2;14.3.2 Magnetic Field-Induced Phase Transformation;420
18.4;14.4 Magnetically Induced Structure Reorientation;421
18.5;14.5 The NiMnGa System;424
18.5.1;14.5.1 Compositional Dependence of Structure and Transformation;424
18.5.2;14.5.2 Martensitic Phases in Ni--Mn--Ga;426
18.5.3;14.5.3 Magnetic Properties of Ni--Mn--Ga;428
18.5.3.1;14.5.3.1 Magnetization Process in Twinned Martensitic Single Crystals ;430
18.5.3.2;14.5.3.2 Magnetic Domain Structure;431
18.6;14.6 Twin Boundary Mobility;431
18.7;14.7 Energy Model for MIR;434
18.8;14.8 Angular Dependence;437
18.9;14.9 Reversible and Irreversible MIR Strain;438
18.10;14.10 Temperature Dependence of MIR;441
18.11;14.11 MIR in Polycrystals, Composites, and Films;443
18.12;14.12 Other Applications Based on MSM Alloys;445
18.13;14.13 Conclusion;446
19;15 Magnetocaloric Effect and Materials;456
19.1;15.1 Introduction;456
19.2;15.2 Theoretical Description of Magnetocaloric Effect;458
19.3;15.3 Experimental Determination of Magnetocaloric Effect;461
19.3.1;15.3.1 Direct Measurement of Adiabatic Temperature Change;461
19.3.2;15.3.2 Indirect Measurement of Entropy and Adiabatic Temperature Changes;461
19.4;15.4 Magnetocaloric Effect Associated with First-Order Phase Transition;462
19.4.1;15.4.1 MCE Due to an Idealized First-Order Phase Transition;462
19.4.2;15.4.2 MCE Due to a Non-Idealized First-Order Phase Transition;463
19.4.2.1;15.4.2.1 In the Vicinity of Curie Temperature;463
19.4.2.2;15.4.2.2 MCE Associated with Complex Magnetic Phase Transitions;465
19.5;15.5 Typical Materials with Giant Magnetocaloric Effect;466
19.5.1;15.5.1 LaFe 30x M x (M = Al, Si) Intermetallics;467
19.5.1.1;15.5.1.1 Generic Magnetic Properties;468
19.5.1.2;15.5.1.2 Spontaneous Magnetostriction of LaFe 130x Si x ;471
19.5.1.3;15.5.1.3 Magnetocaloric effect in LaFe 13-x M x (M = Si, Al, and Co);472
19.5.2;15.5.2 Gd 5 (Ge,Si) 4 and Related Compounds;487
19.5.3;15.5.3 Mn-Based Heusler Alloys;491
19.5.4;15.5.4 Mn-As-Based Compounds;493
19.6;15.6 Concluding Remarks;493
20;16 Spintronics and Novel Magnetic Materials for Advanced Spintronics;499
20.1;16.1 Introduction to Spintronics;499
20.2;16.2 Novel Magnetic Oxide Thin Films by Reactive Bias Target Ion Beam Deposition;503
20.2.1;16.2.1 Reactive Bias Target Ion Beam Deposition (RBTIBD);504
20.2.2;16.2.2 Cr x V 10x O 2 Thin Films;505
20.2.3;16.2.3 Co x Ti 10x O 2 Thin Films;510
20.3;16.3 Diluted Ferromagnetic Ge 1x Mn x by Ion Implantation ;513
21;17 Growth and Properties of Epitaxial Chromium Dioxide (CrO 2 ) Thin Films and Heterostructures;525
21.1;17.1 Density of States (DOS) of Half-Metallic CrO 2 and the Double Exchange Mechanism;525
21.2;17.2 Intrinsic Properties of Epitaxial CrO 2 Films;527
21.3;17.3 Influence of Strain on the Magnetic Properties of CrO 2 Thin Films;531
21.3.1;17.3.1 Film Growth on Atomically Smooth TiO 2 Substrates;531
21.3.2;17.3.2 Films Grown on As-Polished TiO 2 Substrates;535
21.4;17.4 CrO 2 -Based Heterostructures;537
21.4.1;17.4.1 Epitaxial SnO 2 Barrier Layer;539
21.4.2;17.4.2 Epitaxial RuO 2 Barrier Layer;542
21.4.3;17.4.3 VO 2 Barrier Layer;544
21.4.4;17.4.4 TiO 2 Barrier Layer;545
21.4.5;17.4.5 Cr 2 O 3 Barrier Layer;546
22;18 FePt and Related Nanoparticles;551
22.1;18.1 Introduction;552
22.2;18.2 Thermal Effects in Magnetic Nanoparticles;552
22.3;18.3 Magnetic Recording and the Superparamagnetic Limit;555
22.4;18.4 Chemical Synthesis and Shape Control of FePt and Related Nanoparticles;555
22.4.1;18.4.1 Synthesis;555
22.4.2;18.4.2 Shape Control;558
22.5;18.5 Prevention of Sintered Grain Growth During Annealing;559
22.5.1;18.5.1 FePt/MnO Core/Shell Nanoparticles;560
22.5.2;18.5.2 FePt/SiO 2 Core/Shell Nanoparticles;561
22.5.3;18.5.3 Salt Matrix Annealing;562
22.5.4;18.5.4 Flash Annealing;563
22.6;18.6 Effect of Metal Additives on Chemical Ordering and Sintered Grain Growth;564
22.7;18.7 Easy-Axis Orientation;566
22.7.1;18.7.1 Model of Easy-Axis Orientation;566
22.7.2;18.7.2 Easy-Axis Orientation Measurements;567
22.8;18.8 Composition Distribution;568
22.9;18.9 Anisotropy Distribution;569
22.10;18.10 Size Effect on Chemical Ordering;570
22.11;18.11 Summary and Conclusions;571
23;19 Magnetic Manipulation of Colloidal Particles;577
23.1;19.1 Introduction;577
23.2;19.2 Magnetic Manipulation of Particles;579
23.2.1;19.2.1 Deterministic and Brownian-Dominated Particle Systems;579
23.2.2;19.2.2 Material Properties;579
23.2.3;19.2.3 Magnetic Force;582
23.3;19.3 Deterministic Particle Manipulation;584
23.3.1;19.3.1 Substrate-Based Self-Assembly of Particles;584
23.3.2;19.3.2 Substrate-Based Transport and Separation;585
23.4;19.4 Brownian-Influenced Particle Manipulation;587
23.4.1;19.4.1 Magnetic and Nonmagnetic Particle Chains;587
23.4.2;19.4.2 Magnetic and Nonmagnetic Mixed Assemblies in Ferrofluid;590
23.4.3;19.4.3 Anisotropic Particle Alignment;590
23.5;19.5 Brownian-Dominated Manipulation of Particle Populations;592
23.5.1;19.5.1 Modeling Thermal Diffusion;593
23.5.2;19.5.2 Magnetic Particle Concentration;595
23.5.3;19.5.3 Nonmagnetic Particle Concentrations;598
23.5.4;19.5.4 Applications of Concentration Gradients;600
23.6;19.6 Conclusions and Outlook;600
24;20 Applications of Magnetic Nanoparticles in Biomedicine;605
24.1;20.1 Introduction;605
24.2;20.2 Nanoparticle Classification;606
24.3;20.3 Syntheses of SPIO Nanoparticles;606
24.3.1;20.3.1 Co-precipitation;607
24.3.2;20.3.2 Microemulsion;608
24.3.3;20.3.3 Thermal Decomposition;609
24.3.4;20.3.4 Alternative Methods;610
24.4;20.4 Surface Modifications of Magnetic Nanoparticles;610
24.4.1;20.4.1 Organic and Polymeric Stabilizers;611
24.4.1.1;20.4.1.1 Organic Stabilizers;611
24.4.1.2;20.4.1.2 Polymeric Stabilizers;611
24.4.2;20.4.2 Inorganic Molecules;612
24.5;20.5 Pharmacokinetics and Toxicology;613
24.6;20.6 Biomedical Applications of Magnetic Nanoparticles;617
24.6.1;20.6.1 Magnetic Resonance Imaging;617
24.6.1.1;20.6.1.1 Anatomical Imaging;617
24.6.1.2;20.6.1.2 Molecular Imaging and Targeting;622
24.6.1.3;20.6.1.3 Cellular Imaging and Tracking;623
24.6.2;20.6.2 Therapeutic Applications;626
24.6.2.1;20.6.2.1 Hyperthermia;626
24.6.2.2;20.6.2.2 Drug Delivery via Magnetic Targeting;629
24.7;20.7 Conclusion;630
24.8;20.8 Abbreviations;630
25;21 Nano-Magnetophotonics;641
25.1;21.1 Introduction;641
25.2;21.2 Magnetophotonic Crystals;642
25.2.1;21.2.1 1D MPCs Composed of Alternating Magnetic and Dielectric Layers;643
25.2.2;21.2.2 Microcavity-Type 1D MPCs;647
25.2.3;21.2.3 Photonic Band Structure and Eigenmodes of 2D MPCs;649
25.2.4;21.2.4 Faraday Rotation of Three-Dimensional Magnetophotonic Crystals;651
25.2.5;21.2.5 Nonlinear Optical and Magneto-Optical Properties;654
25.2.6;21.2.6 Conclusion;655
25.3;21.3 Magnetorefractive Effect in Nanostructures;655
25.3.1;21.3.1 Magnetorefractive Effect in Nanostructures and Manganites;656
25.3.2;21.3.2 Enhancement of the MRE in Magnetophotonic Crystals;658
25.3.3;21.3.3 Conclusion;661
25.4;21.4 Plasmon-Enhanced Magneto-Optical Responses;661
25.4.1;21.4.1 Garnet--Noble Metal Nanocomposites;662
25.4.2;21.4.2 Metal--Garnet Structures Supporting Transmission Resonances;665
25.4.3;21.4.3 Conclusion;667
26;22 Hard Magnetic Materials for MEMS Applications;674
26.1;22.1 An Introduction to MEMS;674
26.1.1;22.1.1 What Are MEMS?;674
26.1.2;22.1.2 How Are MEMS Made?;675
26.2;22.2 Magnetic MEMS;675
26.2.1;22.2.1 Downscaling Magnetic Systems;676
26.2.2;22.2.2 Prototype Magnetic MEMS;678
26.3;22.3 Permanent Magnets;679
26.4;22.4 Fabrication of -Magnets: Top-Down Routes;680
26.4.1;22.4.1 Bulk Processed Magnets;681
26.4.1.1;22.4.1.1 Machining of Sintered Magnets;681
26.4.1.2;22.4.1.2 Mechanical Deformation;681
26.4.2;22.4.2 Bulk Processed Hard Magnetic Powders;682
26.4.2.1;22.4.2.1 Bonded Powder Techniques;682
26.4.2.2;22.4.2.2 Non-Bonded Powder Techniques;684
26.5;22.5 Fabrication of Thick Hard Magnetic Films;684
26.5.1;22.5.1 Electrodeposition;685
26.5.2;22.5.2 Sputtering;685
26.5.2.1;22.5.2.1 High-Rate Triode Sputtering of NdFeB Films;686
26.5.2.2;22.5.2.2 High-Rate Triode Sputtering of SmCo Films;687
26.5.3;22.5.3 Pulsed Laser Deposition (PLD);688
26.6;22.6 Micro-Patterning of Thick Hard Magnetic Films;689
26.6.1;22.6.1 Topographically Patterned Films;689
26.6.1.1;22.6.1.1 Deposition of RE-TM Films onto Patterned Substrates;690
26.6.1.2;22.6.1.2 Wet Etching of RE-TM Films;692
26.6.1.3;22.6.1.3 Planarization of NdFeB Films;692
26.6.2;22.6.2 Crystallographically Patterned Films;692
26.7;22.7 Conclusions and Perspectives;693
27;23 Solid-State Magnetic Sensors for Bioapplications;697
27.1;23.1 Introduction;697
27.2;23.2 Magnetic Sensors Based on GMR Effect;699
27.2.1;23.2.1 GMR Sensors;701
27.2.2;23.2.2 Spin Valve Sensors;705
27.2.3;23.2.3 GMR and Spin Valve Sensors for Detection of Nanoparticles;707
27.3;23.3 MTJ Sensors;708
27.4;23.4 Sensors Based on AMR Effect;711
27.4.1;23.4.1 AMR Ring Sensors;712
27.4.2;23.4.2 Planar Hall Effect Sensors;712
27.5;23.5 Hall Effect Sensors;714
27.6;23.6 GMI Sensors;717
27.7;23.7 Conclusions;719
28;Index;723



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.