Livshin | Livshin, I: Artificial Neural Networks with Java | Buch | 978-1-4842-4420-3 | sack.de

Buch, Englisch, 566 Seiten, Book, Format (B × H): 178 mm x 254 mm, Gewicht: 1104 g

Livshin

Livshin, I: Artificial Neural Networks with Java


1. Auflage 2019
ISBN: 978-1-4842-4420-3
Verlag: APRESS L.P.

Buch, Englisch, 566 Seiten, Book, Format (B × H): 178 mm x 254 mm, Gewicht: 1104 g

ISBN: 978-1-4842-4420-3
Verlag: APRESS L.P.


Use Java to develop neural network applications in this practical book. After learning the rules involved in neural network processing, you will manually process the first neural network example. This covers the internals of front and back propagation, and facilitates the understanding of the main principles of neural network processing. Artificial Neural Networks with Java also teaches you how to prepare the data to be used in neural network development and suggests various techniques of data preparation for many unconventional tasks. The next big topic discussed in the book is using Java for neural network processing. You will use the Encog Java framework and discover how to do rapid development with Encog, allowing you to create large-scale neural network applications.The book also discusses the inability of neural networks to approximate complex non-continuous functions, and it introduces the micro-batch method that solves this issue. The step-by-step approach includes plenty of examples, diagrams, and screen shots to help you grasp the concepts quickly and easily.What You Will LearnPrepare your data for many different tasksCarry out some unusual neural network tasksCreate neural network to process non-continuous functionsSelect and improve the development model  Who This Book Is ForIntermediate machine learning and deep learning developers who are interested in switching to Java.
Livshin Livshin, I: Artificial Neural Networks with Java jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Part One. Getting Started with Neural NetworksChapter 1.  Learning Neural Network Biological and Artificial Neurons Activation Functions SummaryChapter 2.  Internal Mechanism of Neural Network ProcessingFunction to be ApproximatedNetwork Architecture Forward Pass Calculations Back-Propagation Pass CalculationsFunction derivative and function divergent Table of Most Commonly Used Function DerivativesSummary Chapter 3.  Manual Neural Network Processing Example 1. Manual Approximation of a Function at a Single Point  Building the Neural Network Forward pass calculation Backward Pass Calculation     Calculating Weight Adjustments for the Output Layer Neurons     Calculating Weight Adjustments for the Hidden Layer Neurons    Updating  Network Biases Back to the Forward PassMatrix Form of Network CalculationDigging Deeper Mini-Batches and Stochastic Gradient SummaryPart Two. Neural Network Java Development Environment Chapter 4.  Configuring Your Development Environment Installing Java 8 Environment on Your Windows MachineInstalling NetBeans IDEInstalling Encog Java Framework Installing XChart Package SummaryChapter 5.  Neural Network Development Using Java EncogFramework Example 2. Function Approximation using Java environmentNetwork Architecture Normalizing the Input datasets Building the Java Program that Normalizes Both DatasetsProgram Code Debugging and Executing the Program Processing Results for the Training Method Testing the Network Testing Results Digging deeper.Summary Part Three. Development Non-Trivial Neural Network ApplicationsChapter 6.  Neural Network Prediction Outside of the Training Range Example 3a. Approximating Periodic Functions Outside of the Training RangeNetwork Architecture for Example 3aProgram Code for Example 3aTesting The NetworkExample 3b. Correct Way of Approximating Periodic Functions Outside of the Training RangePreparing the Training DataNetwork Architecture for the Example 3bProgram Code for Example 3bTraining Results for Example 3bTesting Results for Example 3b Summary Chapter 7.  Processing Complex Periodic FunctionsExample 4. Approximation of a Complex Periodic FunctionData Preparation Reflecting Function Topology in DataNetwork Architecture Program CodeTesting the Network Digging DeeperSummary Chapter 8.  Approximating Non-Continuous Functions Example 5. Approximating Non-Continuous FunctionsApproximating Non-Continuous Function Using Conventional Network Process . . . . . . .Network ArchitectureProgram CodeCode Fragments for the Training ProcessUnsatisfactory Training ResultsApproximating the Non-Continuous Function Using Micro-Bach MethodProgram Code for Micro-Batch processingProgram Code for the getChart() MethodCode Fragment 1 of the Training MethodCode Fragment 2 of the Training MethodTraining Results for Micro-Batch methodTest Processing LogicTesting Results for Micro-Batch methodDigging DeeperSummary Chapter 9. Approximation Continuous Functions with Complex TopologyExample 5a. Approximation of Continuous Function with Complex Topology Network Architecture for Example 5aProgram Code for Example 5aTraining Processing Results for Example 5aApproximation of Continuous Function with Complex Topology Using  Micro-Batch Method Program Code for Example 5a Using Micro-Batch MethodExample 5b. Approximation of Spiral-Like Functions Network Architecture for Example 5bProgram Code for Example 5bApproximation of the Same Functions Using Micro-Batch MethodSummary Chapter 10.  Using Neural Network for Classification of ObjectsExample 6. Classification of records Training Dataset Network Architecture Testing Dataset Program Code for Data NormalizationProgram Code for Classification Training ResultsTesting Results Summary Chapter 11.  Importance of Selecting a Correct ModelExample 7.  Predicting Next Month Stock Market Price. .  Data PreparationIncluding Function Topology in the Dataset Building Micro-Batch FilesNetwork ArchitectureProgram Code Training Process Training Results.Testing ProcessTest Processing LogicTesting ResultsAnalyzing Testing Results Summary Chapter 12. Approximation of Functions in 3-D Space Example 8.  Approximation of Functions in 3-D Space Data Preparation Network ArchitectureProgram Code Processing Results Summary


Igor Livshin is a senior architect with extensive experience in developing large-scale applications. He worked for many years for two large insurance companies: CNN and Blue Cross & Blue Shield of Illinois. He currently works as a senior researcher at DevTechnologies specializing in AI and neural networks. Igor has a master’s degree in computer science from the Institute of Technology in Odessa, Russia/Ukraine.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.