Lossio-Ventura / Valverde-Rebaza / Condori-Fernandez | Information Management and Big Data | Buch | 978-3-030-46139-3 | sack.de

Buch, Englisch, Band 1070, 342 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 552 g

Reihe: Communications in Computer and Information Science

Lossio-Ventura / Valverde-Rebaza / Condori-Fernandez

Information Management and Big Data

6th International Conference, SIMBig 2019, Lima, Peru, August 21-23, 2019, Proceedings
1. Auflage 2020
ISBN: 978-3-030-46139-3
Verlag: Springer International Publishing

6th International Conference, SIMBig 2019, Lima, Peru, August 21-23, 2019, Proceedings

Buch, Englisch, Band 1070, 342 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 552 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-030-46139-3
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 6th International Conference on Information Management and Big Data, SIMBig 2019, held in Lima, Peru, in August 2019.

The 15 full papers and 16 short papers presented were carefully reviewed and selected from 104 submissions. The papers address issues such as data mining, artificial intelligence, Natural Language Processing, information retrieval, machine learning, web mining.


Lossio-Ventura / Valverde-Rebaza / Condori-Fernandez Information Management and Big Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Anomaly Detection and Levels of Automation for AI-supported System Administration,- Characterization of Salinity Impact on Synthetic Floc Strength Via Nonlinear Component Analysis,- Recurrence Plot Representation for Multivariate Time-series Analysis,- A Fuzzy Linguistic Approach for Stakeholder Prioritization,- Automatic Speech Recognition of Quechua Language Using HMM Toolkit,- Implementation of an Indoor Location System for Mobile-based Museum Guidance,- TensorFlow for Doctors,- An Eficient Set-based Algorithm for Variable Streaming Clustering,- Sparse Non-negative Matrix Factorization for Retrieving Genomes across Metagenomes,- Collect Ethically: Reduce Bias in Twitter Datasets,- Big Data Recommender System for Encouraging Purchases in New Places Taking into Account Demographics,- Privacy Preservation and Inference With Minimal Mobility Information,- Development of a Hand Gesture Based Control Interface Using Deep Learning,- A Progressive Formalization of Tacit Knowledge to Improve Semantic Expressiveness of Biodiversity Data,- Peruvian Sign Language Recognition Using a Hybrid Deep Neural Network,- Chronic Pain Estimation Through Deep Facial Descriptors Analysis,- Detection of Non-Small Cell Lung Cancer Adenocarcinoma Using Supervised Learning Algorithms Applied to Metabolomic Profiles,- SCUT Sampling and Classication Algorithms to Identify Levels of Child Malnutrition,- Spanish Sentiment Analysis using Universal Language Model Fine-Tuning: a Detailed Case of Study,- Comparing Predictive Machine Learning Algorithms in Fit for Work Occupational Health Assessments,- Recognition of the Image of a Person, based on Viola-Jones,- A Place to Go: Locating Damaged Regions after Natural Disasters through Mobile Phone Data,- Come with Me Now: New Potential Consumers Identification from Competitors,- Global Brand Perception based on Social Prestige, Credibility and Social Responsibility: A Clustering Approach,- Using Embeddings to Predict Changes inLarge Semantic Graphs,- Super Resolution Approach using Generative Adversarial Network Models for improving Satellite Image Resolution,- Computer-assisted Learning for Chinese based on Character Families,- Controlling Formality and Style of Machine Translation Output using AutoML,- Linguistic Fingerprints of Pro-vaccination and Anti-vaccination Writings,- Design of Cognitive Tutor to Diagnose the Types of Intelligence in Preschool Students from Ages 3 to 5,- Fake News in Spanish: Towards the building of a Corpus based onTwitter




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.